Spaces:
Sleeping
Sleeping
### 1. Imports and class names setup ### | |
from model import create_vitB16_model | |
import torch | |
from typing import Tuple, Dict | |
from timeit import default_timer as timer | |
import gradio as gr | |
# Setup class names | |
class_names = ['pizza', 'steak', 'sushi'] | |
### 2. Model and transforms perparation ### | |
model, model_transforms = create_vitB16_model(num_classes=len(class_names)) | |
# Load save weights | |
model.load_state_dict(torch.load(f='09_pretrained_vit_feature_extractor_pizza_steak_sushi_20_percent.pth', | |
map_location='cpu')) | |
# 3. Predict Function | |
def predict(img) -> Tuple[Dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with vitB16 | |
img = model_transforms(img).unsqueeze(dim=0) | |
# Put model into eval mode, make prediction | |
model.eval() | |
with torch.inference_mode(): | |
# Pass transformed image through the model and turn the prediction logits into probabilities | |
pred_logit = model(img) | |
pred_prob = torch.softmax(pred_logit, dim=1) | |
# Create a prediction label and prediction probability dictionary | |
pred_labels_and_probs = {class_names[i]: float(pred_prob[0][i]) for i in range(len(class_names))} | |
# Calculate pred time | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs, pred_time | |
### 4. Gradio app ### | |
# Create title, description and article | |
title = "FoodVision Mini ππ₯©π£" | |
description = "A [vision Transformer B16 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.vit_b_16.html) computer vision model to classify images as pizza, steak or sushi." | |
article = "Created with π€ (and a mixture of mathematics, statistics, and tons of calculations π©π½βπ¬)" | |
# Create example list | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(type='pil'), | |
outputs=[gr.Label(num_top_classes=3, label='Predictions'), | |
gr.Number(label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch(debug=False, # print errors locally? | |
share=True) # generate a publically shareable URL | |