Spaces:
Sleeping
Sleeping
import torch, torchvision | |
def create_vitB16_model(num_classes: int=3, seeds: int = 42): | |
# 1. Setup pretrained viT Weights | |
weights = torchvision.models.ViT_B_16_Weights.DEFAULT | |
# 2. Get transforms | |
transforms = weights.transforms() | |
# 3. Setup pretrained instance | |
model = torchvision.models.vit_b_16(weights=weights) | |
# 4. Freeze the base layers in the model (this will stop all layers from training) | |
for params in model.parameters(): | |
params.requires_grad = False | |
# Set seeds for reproducibility | |
torch.manual_seed(seeds) | |
# 5. Modify the number of output layers | |
model.heads = torch.nn.Sequential( | |
torch.nn.Linear(in_features=768, out_features=num_classes, bias=True) | |
) | |
return model, transforms | |