foodvision_mini / model.py
vapit's picture
add the final scripts
32e94d8
raw
history blame
734 Bytes
import torch, torchvision
def create_vitB16_model(num_classes: int=3, seeds: int = 42):
# 1. Setup pretrained viT Weights
weights = torchvision.models.ViT_B_16_Weights.DEFAULT
# 2. Get transforms
transforms = weights.transforms()
# 3. Setup pretrained instance
model = torchvision.models.vit_b_16(weights=weights)
# 4. Freeze the base layers in the model (this will stop all layers from training)
for params in model.parameters():
params.requires_grad = False
# Set seeds for reproducibility
torch.manual_seed(seeds)
# 5. Modify the number of output layers
model.heads = torch.nn.Sequential(
torch.nn.Linear(in_features=768, out_features=num_classes, bias=True)
)
return model, transforms