|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Flexible UNet model which takes any Torchvision backbone as encoder. |
|
Predicts multi-level feature and makes sure that they are well aligned. |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torchvision |
|
|
|
from .base import BaseModel |
|
from .utils import checkpointed |
|
|
|
|
|
class DecoderBlock(nn.Module): |
|
def __init__( |
|
self, previous, skip, out, num_convs=1, norm=nn.BatchNorm2d, padding="zeros" |
|
): |
|
super().__init__() |
|
|
|
self.upsample = nn.Upsample( |
|
scale_factor=2, mode="bilinear", align_corners=False |
|
) |
|
|
|
layers = [] |
|
for i in range(num_convs): |
|
conv = nn.Conv2d( |
|
previous + skip if i == 0 else out, |
|
out, |
|
kernel_size=3, |
|
padding=1, |
|
bias=norm is None, |
|
padding_mode=padding, |
|
) |
|
layers.append(conv) |
|
if norm is not None: |
|
layers.append(norm(out)) |
|
layers.append(nn.ReLU(inplace=True)) |
|
self.layers = nn.Sequential(*layers) |
|
|
|
def forward(self, previous, skip): |
|
upsampled = self.upsample(previous) |
|
|
|
|
|
|
|
|
|
_, _, hu, wu = upsampled.shape |
|
_, _, hs, ws = skip.shape |
|
assert (hu <= hs) and (wu <= ws), "Using ceil_mode=True in pooling?" |
|
|
|
skip = skip[:, :, :hu, :wu] |
|
return self.layers(torch.cat([upsampled, skip], dim=1)) |
|
|
|
|
|
class AdaptationBlock(nn.Sequential): |
|
def __init__(self, inp, out): |
|
conv = nn.Conv2d(inp, out, kernel_size=1, padding=0, bias=True) |
|
super().__init__(conv) |
|
|
|
|
|
class FeatureExtractor(BaseModel): |
|
default_conf = { |
|
"pretrained": True, |
|
"input_dim": 3, |
|
"output_scales": [0, 2, 4], |
|
"output_dim": 128, |
|
"encoder": "vgg16", |
|
"num_downsample": 4, |
|
"decoder": [64, 64, 64, 64], |
|
"decoder_norm": "nn.BatchNorm2d", |
|
"do_average_pooling": False, |
|
"checkpointed": False, |
|
"padding": "zeros", |
|
} |
|
mean = [0.485, 0.456, 0.406] |
|
std = [0.229, 0.224, 0.225] |
|
|
|
def build_encoder(self, conf): |
|
assert isinstance(conf.encoder, str) |
|
if conf.pretrained: |
|
assert conf.input_dim == 3 |
|
Encoder = getattr(torchvision.models, conf.encoder) |
|
encoder = Encoder(weights="DEFAULT" if conf.pretrained else None) |
|
Block = checkpointed(torch.nn.Sequential, do=conf.checkpointed) |
|
assert max(conf.output_scales) <= conf.num_downsample |
|
|
|
if conf.encoder.startswith("vgg"): |
|
|
|
|
|
|
|
skip_dims = [] |
|
previous_dim = None |
|
blocks = [[]] |
|
for i, layer in enumerate(encoder.features): |
|
if isinstance(layer, torch.nn.Conv2d): |
|
|
|
if i == 0 and conf.input_dim != layer.in_channels: |
|
args = {k: getattr(layer, k) for k in layer.__constants__} |
|
args.pop("output_padding") |
|
layer = torch.nn.Conv2d( |
|
**{**args, "in_channels": conf.input_dim} |
|
) |
|
previous_dim = layer.out_channels |
|
elif isinstance(layer, torch.nn.MaxPool2d): |
|
assert previous_dim is not None |
|
skip_dims.append(previous_dim) |
|
if (conf.num_downsample + 1) == len(blocks): |
|
break |
|
blocks.append([]) |
|
if conf.do_average_pooling: |
|
assert layer.dilation == 1 |
|
layer = torch.nn.AvgPool2d( |
|
kernel_size=layer.kernel_size, |
|
stride=layer.stride, |
|
padding=layer.padding, |
|
ceil_mode=layer.ceil_mode, |
|
count_include_pad=False, |
|
) |
|
blocks[-1].append(layer) |
|
encoder = [Block(*b) for b in blocks] |
|
elif conf.encoder.startswith("resnet"): |
|
|
|
assert conf.encoder[len("resnet") :] in ["18", "34", "50", "101"] |
|
assert conf.input_dim == 3, "Unsupported for now." |
|
block1 = torch.nn.Sequential(encoder.conv1, encoder.bn1, encoder.relu) |
|
block2 = torch.nn.Sequential(encoder.maxpool, encoder.layer1) |
|
block3 = encoder.layer2 |
|
block4 = encoder.layer3 |
|
block5 = encoder.layer4 |
|
blocks = [block1, block2, block3, block4, block5] |
|
|
|
skip_dims = [encoder.conv1.out_channels] |
|
for i in range(1, 5): |
|
modules = getattr(encoder, f"layer{i}")[-1]._modules |
|
conv = sorted(k for k in modules if k.startswith("conv"))[-1] |
|
skip_dims.append(modules[conv].out_channels) |
|
|
|
encoder = [torch.nn.Identity()] + [Block(b) for b in blocks] |
|
skip_dims = [3] + skip_dims |
|
|
|
encoder = encoder[: conf.num_downsample + 1] |
|
skip_dims = skip_dims[: conf.num_downsample + 1] |
|
else: |
|
raise NotImplementedError(conf.encoder) |
|
|
|
assert (conf.num_downsample + 1) == len(encoder) |
|
encoder = nn.ModuleList(encoder) |
|
|
|
return encoder, skip_dims |
|
|
|
def _init(self, conf): |
|
|
|
self.encoder, skip_dims = self.build_encoder(conf) |
|
self.skip_dims = skip_dims |
|
|
|
def update_padding(module): |
|
if isinstance(module, nn.Conv2d): |
|
module.padding_mode = conf.padding |
|
|
|
if conf.padding != "zeros": |
|
self.encoder.apply(update_padding) |
|
|
|
|
|
if conf.decoder is not None: |
|
assert len(conf.decoder) == (len(skip_dims) - 1) |
|
Block = checkpointed(DecoderBlock, do=conf.checkpointed) |
|
norm = eval(conf.decoder_norm) if conf.decoder_norm else None |
|
|
|
previous = skip_dims[-1] |
|
decoder = [] |
|
for out, skip in zip(conf.decoder, skip_dims[:-1][::-1]): |
|
decoder.append( |
|
Block(previous, skip, out, norm=norm, padding=conf.padding) |
|
) |
|
previous = out |
|
self.decoder = nn.ModuleList(decoder) |
|
|
|
|
|
adaptation = [] |
|
for idx, i in enumerate(conf.output_scales): |
|
if conf.decoder is None or i == (len(self.encoder) - 1): |
|
input_ = skip_dims[i] |
|
else: |
|
input_ = conf.decoder[-1 - i] |
|
|
|
|
|
dim = conf.output_dim |
|
if not isinstance(dim, int): |
|
dim = dim[idx] |
|
|
|
block = AdaptationBlock(input_, dim) |
|
adaptation.append(block) |
|
self.adaptation = nn.ModuleList(adaptation) |
|
self.scales = [2**s for s in conf.output_scales] |
|
|
|
def _forward(self, data): |
|
image = data["image"] |
|
if self.conf.pretrained: |
|
mean, std = image.new_tensor(self.mean), image.new_tensor(self.std) |
|
image = (image - mean[:, None, None]) / std[:, None, None] |
|
|
|
skip_features = [] |
|
features = image |
|
for block in self.encoder: |
|
features = block(features) |
|
skip_features.append(features) |
|
|
|
if self.conf.decoder: |
|
pre_features = [skip_features[-1]] |
|
for block, skip in zip(self.decoder, skip_features[:-1][::-1]): |
|
pre_features.append(block(pre_features[-1], skip)) |
|
pre_features = pre_features[::-1] |
|
else: |
|
pre_features = skip_features |
|
|
|
out_features = [] |
|
for adapt, i in zip(self.adaptation, self.conf.output_scales): |
|
out_features.append(adapt(pre_features[i])) |
|
pred = {"feature_maps": out_features, "skip_features": skip_features} |
|
return pred |
|
|
|
def loss(self, pred, data): |
|
raise NotImplementedError |
|
|
|
def metrics(self, pred, data): |
|
raise NotImplementedError |
|
|