Spaces:
Sleeping
Sleeping
import timm | |
import numpy as np | |
import torch.nn as nn | |
from ._base import EncoderMixin | |
def _make_divisible(x, divisible_by=8): | |
return int(np.ceil(x * 1.0 / divisible_by) * divisible_by) | |
class MobileNetV3Encoder(nn.Module, EncoderMixin): | |
def __init__(self, model_name, width_mult, depth=5, **kwargs): | |
super().__init__() | |
if "large" not in model_name and "small" not in model_name: | |
raise ValueError("MobileNetV3 wrong model name {}".format(model_name)) | |
self._mode = "small" if "small" in model_name else "large" | |
self._depth = depth | |
self._out_channels = self._get_channels(self._mode, width_mult) | |
self._in_channels = 3 | |
# minimal models replace hardswish with relu | |
self.model = timm.create_model( | |
model_name=model_name, | |
scriptable=True, # torch.jit scriptable | |
exportable=True, # onnx export | |
features_only=True, | |
) | |
def _get_channels(self, mode, width_mult): | |
if mode == "small": | |
channels = [16, 16, 24, 48, 576] | |
else: | |
channels = [16, 24, 40, 112, 960] | |
channels = [3] + [_make_divisible(x * width_mult) for x in channels] | |
return tuple(channels) | |
def get_stages(self): | |
if self._mode == "small": | |
return [ | |
nn.Identity(), | |
nn.Sequential(self.model.conv_stem, self.model.bn1, self.model.act1), | |
self.model.blocks[0], | |
self.model.blocks[1], | |
self.model.blocks[2:4], | |
self.model.blocks[4:], | |
] | |
elif self._mode == "large": | |
return [ | |
nn.Identity(), | |
nn.Sequential( | |
self.model.conv_stem, | |
self.model.bn1, | |
self.model.act1, | |
self.model.blocks[0], | |
), | |
self.model.blocks[1], | |
self.model.blocks[2], | |
self.model.blocks[3:5], | |
self.model.blocks[5:], | |
] | |
else: | |
ValueError( | |
"MobileNetV3 mode should be small or large, got {}".format(self._mode) | |
) | |
def forward(self, x): | |
stages = self.get_stages() | |
features = [] | |
for i in range(self._depth + 1): | |
x = stages[i](x) | |
features.append(x) | |
return features | |
def load_state_dict(self, state_dict, **kwargs): | |
state_dict.pop("conv_head.weight", None) | |
state_dict.pop("conv_head.bias", None) | |
state_dict.pop("classifier.weight", None) | |
state_dict.pop("classifier.bias", None) | |
self.model.load_state_dict(state_dict, **kwargs) | |
mobilenetv3_weights = { | |
"tf_mobilenetv3_large_075": { | |
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth" # noqa | |
}, | |
"tf_mobilenetv3_large_100": { | |
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth" # noqa | |
}, | |
"tf_mobilenetv3_large_minimal_100": { | |
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth" # noqa | |
}, | |
"tf_mobilenetv3_small_075": { | |
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth" # noqa | |
}, | |
"tf_mobilenetv3_small_100": { | |
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth" # noqa | |
}, | |
"tf_mobilenetv3_small_minimal_100": { | |
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth" # noqa | |
}, | |
} | |
pretrained_settings = {} | |
for model_name, sources in mobilenetv3_weights.items(): | |
pretrained_settings[model_name] = {} | |
for source_name, source_url in sources.items(): | |
pretrained_settings[model_name][source_name] = { | |
"url": source_url, | |
"input_range": [0, 1], | |
"mean": [0.485, 0.456, 0.406], | |
"std": [0.229, 0.224, 0.225], | |
"input_space": "RGB", | |
} | |
timm_mobilenetv3_encoders = { | |
"timm-mobilenetv3_large_075": { | |
"encoder": MobileNetV3Encoder, | |
"pretrained_settings": pretrained_settings["tf_mobilenetv3_large_075"], | |
"params": {"model_name": "tf_mobilenetv3_large_075", "width_mult": 0.75}, | |
}, | |
"timm-mobilenetv3_large_100": { | |
"encoder": MobileNetV3Encoder, | |
"pretrained_settings": pretrained_settings["tf_mobilenetv3_large_100"], | |
"params": {"model_name": "tf_mobilenetv3_large_100", "width_mult": 1.0}, | |
}, | |
"timm-mobilenetv3_large_minimal_100": { | |
"encoder": MobileNetV3Encoder, | |
"pretrained_settings": pretrained_settings["tf_mobilenetv3_large_minimal_100"], | |
"params": {"model_name": "tf_mobilenetv3_large_minimal_100", "width_mult": 1.0}, | |
}, | |
"timm-mobilenetv3_small_075": { | |
"encoder": MobileNetV3Encoder, | |
"pretrained_settings": pretrained_settings["tf_mobilenetv3_small_075"], | |
"params": {"model_name": "tf_mobilenetv3_small_075", "width_mult": 0.75}, | |
}, | |
"timm-mobilenetv3_small_100": { | |
"encoder": MobileNetV3Encoder, | |
"pretrained_settings": pretrained_settings["tf_mobilenetv3_small_100"], | |
"params": {"model_name": "tf_mobilenetv3_small_100", "width_mult": 1.0}, | |
}, | |
"timm-mobilenetv3_small_minimal_100": { | |
"encoder": MobileNetV3Encoder, | |
"pretrained_settings": pretrained_settings["tf_mobilenetv3_small_minimal_100"], | |
"params": {"model_name": "tf_mobilenetv3_small_minimal_100", "width_mult": 1.0}, | |
}, | |
} | |