Spaces:
Sleeping
Sleeping
title: T5 Email Summarizer Demo v3 | |
emoji: π§ | |
colorFrom: blue | |
colorTo: green | |
sdk: gradio | |
sdk_version: 4.44.1 | |
app_file: app.py | |
pinned: true | |
license: apache-2.0 | |
models: | |
- wordcab/t5-small-email-summarizer | |
datasets: | |
- argilla/FinePersonas-Conversations-Email-Summaries | |
space_hardware: "cpu-basic" | |
# T5 Email Summarizer - Interactive Demo v3 | |
This Space provides an interactive demo of the [wordcab/t5-small-email-summarizer](https://huggingface.co/wordcab/t5-small-email-summarizer) model. | |
## π§ v3 Major Updates | |
- **Separate Subject/Body fields** for better email structure | |
- **General title normalization** (Mr. β Mr, Dr. β Dr, Prof. β Prof) | |
- **Improved unicode handling** for special characters | |
- **Robust preprocessing** that handles all edge cases | |
## Features | |
- π― **Dual-mode summarization**: Brief (1-2 sentences) or Full (detailed) | |
- π **Fast inference**: Quick processing even on CPU | |
- πͺ **Robust**: Handles typos, abbreviations, and informal language | |
- π **Auto-detect**: Automatically chooses brief or full based on email length | |
- π§ **Smart preprocessing**: General solution for title and unicode issues | |
## Model Details | |
- **Architecture**: T5-small (60M parameters) | |
- **Training Data**: [argilla/FinePersonas-Conversations-Email-Summaries](https://huggingface.co/datasets/argilla/FinePersonas-Conversations-Email-Summaries) (364K examples) | |
- **Max Input**: 512 tokens (~2500 characters) | |
- **License**: Apache 2.0 | |
## Try It Out | |
1. Enter subject line (optional) and email body separately | |
2. Select summary type or use auto-detect | |
3. Click "Generate Summary" | |
The model will produce a concise, accurate summary with automatic normalization of titles and special characters! |