Train / __init__.py
Ignaciohhhhggfgjfrffd's picture
Upload __init__.py
74d924f verified
import base64
import ctypes
import gc
import inspect
import json
import mmap
import os
import shutil
import signal
import sys
import time
import warnings
from collections import defaultdict
from concurrent.futures import as_completed, ThreadPoolExecutor
from contextlib import contextmanager, nullcontext
from contextvars import copy_context
from dataclasses import dataclass
from datetime import timedelta
from functools import lru_cache as cache, partial, wraps
from importlib import metadata
import importlib
from queue import Empty, Queue as ThreadQueue
from threading import Thread
from types import ModuleType, SimpleNamespace
from typing import (
Any, Callable, Dict, Generator, Generic, List, Literal, NamedTuple,
Optional, Set, Tuple, Type, TypedDict, TypeVar, Union, overload
)
from typing_extensions import (
assert_never, ParamSpec, TypeAlias, Unpack, get_args
)
from pathlib import Path
from packaging import version
import gradio as gr
import httpx
from gradio.context import Context, LocalContext
from gradio.helpers import Progress, TrackedIterable
from gradio.queueing import Queue
from pydantic import BaseModel
warnings.filterwarnings("ignore", category=UserWarning, message="Can't initialize NVML")
try:
import torch
from torch.utils.weak import WeakTensorKeyDictionary
except ImportError:
torch = None
WeakTensorKeyDictionary = dict
if torch and "weights_only" in inspect.signature(torch.load).parameters:
_original_torch_load = torch.load
@wraps(_original_torch_load)
def patched_torch_load(*args, **kwargs):
kwargs.setdefault("weights_only", False)
return _original_torch_load(*args, **kwargs)
torch.load = patched_torch_load
try:
from tqdm import tqdm as _tqdm
except ImportError:
_tqdm = None
def boolean(value: str | None) -> bool:
return value is not None and value.lower() in ("1", "t", "true")
class Settings:
def __init__(self):
self.zero_gpu = boolean(os.getenv('SPACES_ZERO_GPU'))
self.zero_device_api_url = os.getenv('SPACES_ZERO_DEVICE_API_URL')
self.gradio_auto_wrap = boolean(os.getenv('SPACES_GRADIO_AUTO_WRAP'))
self.zero_patch_torch_device = boolean(os.getenv('ZERO_GPU_PATCH_TORCH_DEVICE'))
self.zero_gpu_v2 = boolean(os.getenv('ZEROGPU_V2'))
GPUSizeConfig = Literal['auto', 'medium', 'large']
self.zerogpu_size: Union[Literal['medium', 'large'], Literal['auto']] = os.getenv('ZEROGPU_SIZE', 'large')
self.zerogpu_medium_size_threshold = int(os.getenv('ZEROGPU_MEDIUM_SIZE_THRESHOLD', 30 * 2**30))
ZEROGPU_OFFLOAD_DIR_DEFAULT = str(Path.home() / '.zerogpu' / 'tensors')
self.zerogpu_offload_dir = os.getenv('ZEROGPU_OFFLOAD_DIR', ZEROGPU_OFFLOAD_DIR_DEFAULT)
self.zerogpu_proc_self_cgroup_path = os.getenv('ZEROGPU_PROC_SELF_CGROUP_PATH', '/proc/self/cgroup')
self.zerogpu_cuda_device_name = os.getenv('ZEROGPU_CUDA_DEVICE_NAME', "NVIDIA H200 MIG 3g.71gb")
self.zerogpu_cuda_total_memory = int(os.getenv('ZEROGPU_CUDA_TOTAL_MEMORY', 74625056768))
self.zerogpu_cuda_reserved_memory = int(os.getenv('ZEROGPU_CUDA_RESERVED_MEMORY', 0))
self.zerogpu_cuda_capability_major = int(os.getenv('ZEROGPU_CUDA_CAPABILITY_MAJOR', 9))
self.zerogpu_cuda_capability_minor = int(os.getenv('ZEROGPU_CUDA_CAPABILITY_MINOR', 0))
self.zerogpu_cuda_multi_processor_count = int(os.getenv('ZEROGPU_CUDA_MULTI_PROCESSOR_COUNT', 60))
Config = Settings()
if Config.zero_gpu:
if Config.zero_device_api_url is None:
print("Error: SPACES_ZERO_DEVICE_API_URL environment variable must be set on ZeroGPU Spaces.", file=sys.stderr)
GPUSizeConfig = Literal['auto', 'medium', 'large']
if Config.zerogpu_size not in get_args(GPUSizeConfig):
print(f"Error: ZEROGPU_SIZE should be one of {', '.join(get_args(GPUSizeConfig))}", file=sys.stderr)
T = TypeVar('T')
@cache
def self_cgroup_device_path() -> str:
try:
cgroup_content = Path(Config.zerogpu_proc_self_cgroup_path).read_text()
for line in cgroup_content.strip().split('\n'):
contents = line.split(':devices:')
if len(contents) == 2:
return contents[1]
except Exception as e:
print(f"Could not determine cgroup device path: {e}", file=sys.stderr)
return ""
class SimpleQueue(ThreadQueue[T]):
def put(self, obj: T):
try:
super().put(obj)
except Exception as e:
print(f"Error in SimpleQueue.put: {e}", file=sys.stderr)
def close(self):
try:
pass
except Exception as e:
print(f"Error closing SimpleQueue: {e}", file=sys.stderr)
def wlock_release(self):
try:
pass
except (ValueError, Exception):
pass
def drop_params(fn: Callable[[], T]) -> Callable[..., T]:
def drop(*args, **kwargs):
return fn()
return drop
def gradio_request_var():
try:
from gradio.context import LocalContext
return LocalContext.request
except ImportError:
print("Could not import Gradio LocalContext. Ensure Gradio version is at least 3.46.", file=sys.stderr)
return None
def malloc_trim():
try:
ctypes.CDLL("libc.so.6").malloc_trim(0)
except (OSError, AttributeError) as e:
print(f"malloc_trim not available on this system: {e}", file=sys.stderr)
debug = partial(print, 'SPACES_ZERO_GPU_DEBUG')
def jwt_payload(token: str) -> dict[str, Any]:
try:
_, payload, _ = token.split('.')
return json.loads(base64.urlsafe_b64decode(f'{payload}=='))
except Exception as e:
print(f"Error decoding JWT payload: {e}", file=sys.stderr)
return {}
if torch:
@wraps(torch.empty_like)
def empty_like_raw_alloc(tensor: torch.Tensor, **kwargs) -> torch.Tensor:
empty = torch.empty_like(tensor, **{**kwargs, 'requires_grad': False})
if (nbytes := empty.untyped_storage().nbytes()) > 0:
try:
buffer = mmap.mmap(-1, nbytes, prot=mmap.PROT_READ | mmap.PROT_WRITE)
buffer_torch = torch.frombuffer(buffer, dtype=torch.uint8)
empty.set_(buffer_torch.untyped_storage(), 0, empty.shape, empty.stride())
except Exception as e:
print(f"Failed to create mmap buffer for tensor: {e}", file=sys.stderr)
empty.requires_grad_(kwargs.get('requires_grad', False))
return empty
Params = Tuple[Tuple[object, ...], Dict[str, Any]]
Res = TypeVar('Res')
Param = ParamSpec('Param')
class EmptyKwargs(TypedDict):
pass
@dataclass
class OkResult(Generic[Res]):
value: Res
@dataclass
class ExceptionResult:
traceback: str
error_cls: str
@dataclass
class AbortedResult:
pass
@dataclass
class EndResult:
pass
@dataclass
class GradioQueueEvent:
method_name: str
args: tuple[Any, ...]
kwargs: dict[str, Any]
RegularResQueueResult: TypeAlias = Union["OkResult[Res]", "ExceptionResult", "GradioQueueEvent"]
GeneratorResQueueResult: TypeAlias = Union["OkResult[Res]", "ExceptionResult", "EndResult", "GradioQueueEvent"]
YieldQueueResult: TypeAlias = Union["OkResult[Res]", "ExceptionResult", "EndResult", "AbortedResult"]
Duration: TypeAlias = Union[int, timedelta]
DynamicDuration: TypeAlias = Union[Duration, Callable[Param, Duration], None]
if torch:
class AliasId(NamedTuple):
data_ptr: int
dtype: torch.dtype
shape: tuple[int, ...]
stride: tuple[int, ...]
@classmethod
def from_tensor(cls, tensor: torch.Tensor):
return cls(
tensor.data_ptr(),
tensor.dtype,
tensor.shape,
tensor.stride(),
)
AllowToken = str
NvidiaIndex = int
NvidiaUUID = str
CGroupPath = str
TaskId = int
GPUSize = Literal['medium', 'large']
AuthLevel = Literal['regular', 'pro']
QueuingReason = Literal['node', 'concurrency']
AUTHENTICATED_HEADER = 'X-Authenticated'
QUEUING_REASON_HEADER = 'X-Queuing-Reason'
class ScheduleResponse(BaseModel):
idle: bool
nvidiaIndex: int
nvidiaUUID: str
allowToken: str
class ScheduleMetadata(BaseModel):
auth: Optional[AuthLevel] = None
queuing_reason: Optional[QueuingReason] = None
class QuotaInfos(BaseModel):
left: int
wait: timedelta
class QueueEvent(BaseModel):
event: Literal['ping', 'failed', 'succeeded']
data: Optional[ScheduleResponse] = None
def sse_parse(text: str):
event, *data = text.strip().splitlines()
assert event.startswith('event:')
event = event[6:].strip()
if event in ('ping', 'failed'):
return QueueEvent(event=event)
assert event == 'succeeded'
(data,) = data
assert data.startswith('data:')
data = data[5:].strip()
return QueueEvent(event=event, data=ScheduleResponse.parse_raw(data))
def sse_stream(res: httpx.Response) -> Generator[QueueEvent, Any, None]:
for text in res.iter_text():
if len(text) == 0:
break
try:
yield sse_parse(text)
except GeneratorExit:
res.close()
break
except Exception as e:
print(f"Error parsing SSE event: {e}", file=sys.stderr)
continue
class APIClient:
def __init__(self, client: httpx.Client):
self.client = client
def startup_report(self, cgroup_path: str, gpu_size: GPUSize) -> httpx.codes:
try:
res = self.client.post('/startup-report', params={'cgroupPath': cgroup_path, 'gpuSize': gpu_size})
return httpx.codes(res.status_code)
except Exception as e:
print(f"Failed to send startup report: {e}", file=sys.stderr)
return httpx.codes.INTERNAL_SERVER_ERROR
def schedule(self, cgroup_path: str, task_id: int = 0, token: str | None = None, token_version: int = 1, duration_seconds: int = 0, enable_queue: bool = True):
try:
params: dict[str, str | int | bool] = {'cgroupPath': cgroup_path, 'taskId': task_id, 'enableQueue': enable_queue, 'tokenVersion': token_version, 'durationSeconds': duration_seconds}
if token is not None:
params['token'] = token
req = self.client.build_request(method='POST', url='/schedule', params=params)
res = self.client.send(req, stream=True)
status = httpx.codes(res.status_code)
auth: AuthLevel | None = res.headers.get(AUTHENTICATED_HEADER)
queuing_reason: QueuingReason | None = res.headers.get(QUEUING_REASON_HEADER)
metadata = ScheduleMetadata(auth=auth, queuing_reason=queuing_reason)
if status is not httpx.codes.OK and status is not httpx.codes.TOO_MANY_REQUESTS:
res.close()
return status, metadata
if "text/event-stream" in res.headers.get('content-type', ''):
return sse_stream(res), metadata
res.read()
if status is httpx.codes.TOO_MANY_REQUESTS:
return QuotaInfos(**res.json()), metadata
if status is httpx.codes.OK:
return ScheduleResponse(**res.json()), metadata
assert_never(status)
except Exception as e:
print(f"Error in APIClient.schedule: {e}", file=sys.stderr)
return httpx.codes.INTERNAL_SERVER_ERROR, ScheduleMetadata()
def allow(self, allow_token: str, pid: int):
try:
res = self.client.post('/allow', params={'allowToken': allow_token, 'pid': pid})
return httpx.codes(res.status_code)
except Exception as e:
print(f"Error in APIClient.allow: {e}", file=sys.stderr)
return httpx.codes.INTERNAL_SERVER_ERROR
def release(self, allow_token: str, fail: bool = False) -> httpx.codes:
try:
res = self.client.post('/release', params={'allowToken': allow_token, 'fail': fail})
return httpx.codes(res.status_code)
except Exception as e:
print(f"Error in APIClient.release: {e}", file=sys.stderr)
return httpx.codes.INTERNAL_SERVER_ERROR
def get_queue_size(self) -> float:
try:
res = self.client.get('/queue-size')
assert res.status_code == 200, res.status_code
return res.json()
except Exception as e:
print(f"Error in APIClient.get_queue_size: {e}", file=sys.stderr)
return 0.0
def remove_tqdm_multiprocessing_lock():
if _tqdm is None:
return
try:
tqdm_lock = _tqdm.get_lock()
if hasattr(tqdm_lock, 'locks'):
pass
except Exception as e:
print(f"Error while trying to remove tqdm multiprocessing lock: {e}", file=sys.stderr)
tqdm = _tqdm
try:
Success = gr.Success
except AttributeError:
Success = gr.Info
Level: TypeAlias = "Literal['success', 'info', 'warning']"
def modal(level: Level):
if level == 'info': return gr.Info
if level == 'success': return Success
if level == 'warning': return gr.Warning
return gr.Info
class GradioPartialContext(NamedTuple):
event_id: str | None
in_event_listener: bool
progress: Progress | None
@staticmethod
def get():
TrackedIterable.__reduce__ = tracked_iterable__reduce__
return GradioPartialContext(
event_id=LocalContext.event_id.get(None),
in_event_listener=LocalContext.in_event_listener.get(False),
progress=LocalContext.progress.get(None),
)
@staticmethod
def apply(context: 'GradioPartialContext'):
LocalContext.event_id.set(context.event_id)
LocalContext.in_event_listener.set(context.in_event_listener)
LocalContext.progress.set(context.progress)
def get_queue_instance():
blocks = LocalContext.blocks.get(None)
if blocks is None: return None
return getattr(blocks, '_queue', None)
def get_event():
queue = get_queue_instance()
event_id = LocalContext.event_id.get(None)
if queue is None or event_id is None: return None
for job in getattr(queue, 'active_jobs', []):
if job is None: continue
for event in job:
if getattr(event, '_id', None) == event_id:
return event
return None
def get_server_port() -> int | None:
from_request_context = True
if (blocks := LocalContext.blocks.get(None)) is None:
from_request_context = False
if (blocks := Context.root_block) is None: return None
if (server := getattr(blocks, "server", None)) is None:
if from_request_context:
warnings.warn("Gradio: No blocks.server inside a request")
return -1
server_config = getattr(server, 'config', None)
if isinstance(server_config, dict):
return server_config.get('port')
elif isinstance(server_config, Settings):
warnings.warn("ZeroGPU: Gradio server.config appears to be the global ZeroGPU Config object. Cannot determine Gradio port from this object.")
return None
elif hasattr(server_config, 'port'):
return server_config.port
warnings.warn(f"ZeroGPU: Unexpected type for server.config ({type(server_config)}). Cannot determine Gradio port.")
return None
def try_process_queue_event(method_name: str, *args, **kwargs):
queue = get_queue_instance()
if queue is None:
warnings.warn("ZeroGPU: Cannot get Gradio app Queue instance")
return
method = getattr(queue, method_name, None)
if callable(method):
try:
method(*args, **kwargs)
except Exception as e:
print(f"Error processing Gradio queue event '{method_name}': {e}", file=sys.stderr)
QUEUE_RPC_METHODS = ["set_progress", "log_message"]
def patch_gradio_queue(res_queue: Union[SimpleQueue[RegularResQueueResult | None], SimpleQueue[GeneratorResQueueResult | None]]):
def rpc_method(method_name: str):
def method(*args, **kwargs):
if args and isinstance(args[0], Queue): args = args[1:]
res_queue.put(GradioQueueEvent(method_name, args, kwargs))
return method
for method_name in QUEUE_RPC_METHODS:
if (method := getattr(Queue, method_name, None)) is None:
warnings.warn(f"ZeroGPU: Gradio Queue has no {method_name} attribute")
continue
if not callable(method):
warnings.warn(f"ZeroGPU: Gradio Queue {method_name} is not callable")
continue
setattr(Queue, method_name, rpc_method(method_name))
TrackedIterable.__reduce__ = tracked_iterable__reduce__
def tracked_iterable__reduce__(self):
try:
res: tuple = super(TrackedIterable, self).__reduce__()
cls, base, state, *_ = res
return cls, base, {**state, **{'iterable': None, '_tqdm': None}}
except Exception:
return object, (), {}
def supports_auth():
try:
return version.parse(gr.__version__) >= version.Version('4.27.0')
except Exception:
return False
Param_one_launch = ParamSpec('Param_one_launch')
def one_launch(task: Callable[Param_one_launch, None], *task_args: Param_one_launch.args, **task_kwargs: Param_one_launch.kwargs):
_launch = gr.Blocks.launch
@wraps(gr.Blocks.launch)
def launch(*args, **kwargs):
task(*task_args, **task_kwargs)
gr.Blocks.launch = _launch
return gr.Blocks.launch(*args, **kwargs)
gr.Blocks.launch = launch
class HTMLError(gr.Error):
def __str__(self): return str(self.message)
def error(title: str, message: str, html: bool = False):
print(f"ERROR: {title} - {message}", file=sys.stderr)
error_cls = HTMLError if html else gr.Error
params = inspect.signature(gr.Error).parameters
kwargs: dict[str, Any] = {}
if 'title' in params: kwargs['title'] = title
if 'print_exception' in params: kwargs['print_exception'] = False
try:
pass
except Exception:
pass
def info(title: str, message: str, level: Level = 'info'):
print(f"INFO: {title} - {message}")
info_cls = modal(level)
params = inspect.signature(gr.Info).parameters
kwargs: dict[str, Any] = {}
if 'title' in params: kwargs['title'] = title
try:
info_cls(message, **kwargs)
except Exception:
pass
TOKEN_HEADER = 'X-IP-Token'
UNUSED_MESSAGE = "GPU device not used"
NO_GPU_MESSAGE_REGULAR = "No GPU was available"
NO_GPU_MESSAGE_INQUEUE = "No GPU was available after 60 seconds"
EXAMPLES_RETRY_MESSAGE = "Try re-running outside of examples if it happened after clicking one"
SIGNUP_ON_HF_TXT = "Create a free account"
SIGNUP_ON_HF_URL = "https://huggingface.co/join"
SUBSCRIBE_TO_PRO_TXT = "Subscribe to Pro"
SUBSCRIBE_TO_PRO_URL = "https://huggingface.co/settings/billing/subscription"
def api_client():
assert Config.zero_device_api_url is not None
httpx_client = httpx.Client(base_url=Config.zero_device_api_url, timeout=60, verify=False)
return APIClient(httpx_client)
def startup_report_client(cgroup_path: str, gpu_size: GPUSize):
retries, max_retries = 0, 2
client = api_client()
status = None
while retries <= max_retries:
status = client.startup_report(cgroup_path, gpu_size)
if status is not httpx.codes.NOT_FOUND:
break
time.sleep(1)
retries += 1
if status is not httpx.codes.OK:
print(f"Error while initializing ZeroGPU: status {status}", file=sys.stderr)
def html_string(html_contents: str, text_contents: str):
class HTMLString(str):
def __str__(self): return text_contents
return HTMLString(html_contents)
def _toast_action(auth: AuthLevel | None, supports_html: bool, pro_message: str, unlogged_desc: str, logged_desc: str, ending: str) -> tuple[str, str]:
if not supports_auth() or auth == 'pro':
return pro_message, pro_message
link = SIGNUP_ON_HF_URL if auth is None else SUBSCRIBE_TO_PRO_URL
text = SIGNUP_ON_HF_TXT if auth is None else SUBSCRIBE_TO_PRO_TXT
desc = unlogged_desc if auth is None else logged_desc
desc += f" {ending}."
style = ";".join(["white-space: nowrap", "text-underline-offset: 2px", "color: var(--body-text-color)"])
html = f'<a style="{style}" href="{link}">{text}</a> {desc}'
markdown = f'[{text}]({link}) {desc}'
return html, markdown
def schedule(task_id: int, request: gr.Request | None = None, duration: timedelta = timedelta(0), _first_attempt: bool = True) -> Optional[ScheduleResponse]:
try:
gradio_version = version.parse(gr.__version__)
if gradio_version.major < 4:
print("ZeroGPU is only compatible with Gradio 4+", file=sys.stderr)
return None
except Exception:
print("Could not parse Gradio version.", file=sys.stderr)
return None
GRADIO_HTML_TOASTS = gradio_version >= version.Version('4.39')
GRADIO_HANDSHAKE = gradio_version >= version.Version('5.16.1')
token, payload = _get_token_and_payload(request)
if token is not None and (token_error := payload.get('error')):
info("ZeroGPU client warning", f"Falling back to IP-based quotas ({token_error})", level='warning')
duration_seconds = duration.seconds
res, meta = api_client().schedule(cgroup_path=self_cgroup_device_path(), task_id=task_id, token=token, token_version=2 if GRADIO_HANDSHAKE else 1, duration_seconds=duration_seconds)
if isinstance(res, ScheduleResponse):
print("This Space is currently using 0 minutes, 0 seconds of the huggingface.co plan.")
return res
if isinstance(res, QuotaInfos):
requested = duration.seconds
message = ""
if res.wait < timedelta(0):
message = f"The requested GPU duration ({requested}s) is larger than the maximum allowed"
elif token is None:
message = f"Space app has reached its GPU limit. {EXAMPLES_RETRY_MESSAGE}"
else:
if payload.get('user') is None and res.wait == timedelta(0):
message = "You have exceeded your runs limit."
else:
gpu = "Pro GPU" if meta.auth == 'pro' else ("free GPU" if meta.auth == 'regular' else "GPU")
message = f"You have exceeded your {gpu} quota ({requested}s requested vs. {res.left}s left). Try again in {res.wait}"
print(f"ZeroGPU quota exceeded: {message}", file=sys.stderr)
return None
if not isinstance(res, httpx.codes):
if meta.queuing_reason in ('node', None): info("ZeroGPU queue", "Waiting for a GPU to become available")
elif meta.queuing_reason == 'concurrency': info("ZeroGPU queue", "Waiting for a GPU slot on this Space")
else: assert_never(meta.queuing_reason)
connection_event = get_event()
if connection_event is None and request is not None:
warnings.warn("ZeroGPU: Cannot get Gradio app Queue instance")
while True:
try:
event = next(res)
except StopIteration:
print("Unexpected end of stream in schedule", file=sys.stderr)
return None
except httpx.RemoteProtocolError:
if not _first_attempt:
print("Error while re-trying after queue disconnect", file=sys.stderr)
return None
return schedule(task_id, request, duration, _first_attempt=False)
except Exception as e:
print(f"Error processing schedule event stream: {e}", file=sys.stderr)
return None
if event.event == 'ping':
if connection_event is not None and not connection_event.alive:
res.close()
print("Connection closed by visitor while queueing", file=sys.stderr)
return None
continue
if event.event == 'failed':
if token is None:
message = f"{NO_GPU_MESSAGE_INQUEUE}. {EXAMPLES_RETRY_MESSAGE}"
else:
_, details_markdown = _toast_action(auth=meta.auth, supports_html=GRADIO_HTML_TOASTS, pro_message="Retry later", unlogged_desc="to get a higher", logged_desc="to get the highest", ending="priority in ZeroGPU queues")
message = f"{NO_GPU_MESSAGE_INQUEUE} {details_markdown}"
print(f"ZeroGPU queue timeout: {message}", file=sys.stderr)
return None
if event.event == 'succeeded':
assert event.data is not None
if connection_event is not None and not connection_event.alive:
release(event.data.allowToken)
print("Connection closed by visitor on queue success", file=sys.stderr)
return None
info("ZeroGPU queue", "Successfully acquired a GPU", level='success')
print("This Space is currently using 0 minutes, 0 seconds of the huggingface.co plan.")
return event.data
if res is httpx.codes.SERVICE_UNAVAILABLE:
print(f"ZeroGPU client error: {NO_GPU_MESSAGE_REGULAR}", file=sys.stderr)
return None
if res is httpx.codes.UNAUTHORIZED:
print("ZeroGPU client error: Expired ZeroGPU proxy token", file=sys.stderr)
return None
reason = httpx.codes.get_reason_phrase(res) if isinstance(res, int) else "Unknown"
print(f"ZeroGPU API /schedule error: {res} ({reason})", file=sys.stderr)
return None
def allow(allow_token: str) -> None:
process_id = os.getpid()
if process_id == 1:
print("CRITICAL: Allowing PID 1 on ZeroGPU will end up killing your Space. Aborting.", file=sys.stderr)
return
if api_client().allow(allow_token=allow_token, pid=process_id) is not httpx.codes.OK:
print(f"API call to /allow failed for token {allow_token}", file=sys.stderr)
def release(allow_token: str, *, fail: bool = False, allow_404: bool = True) -> None:
res = api_client().release(allow_token=allow_token, fail=fail)
if res is httpx.codes.NO_CONTENT:
try:
info("ZeroGPU client warning", UNUSED_MESSAGE, level='warning')
except AttributeError:
pass
warnings.warn(UNUSED_MESSAGE, RuntimeWarning)
return
if res is httpx.codes.NOT_FOUND:
if not allow_404:
warnings.warn("ZeroGPU API /release warning: 404 Not Found")
return
if httpx.codes.is_success(res):
return
reason = httpx.codes.get_reason_phrase(res) if isinstance(res, int) else "Unknown"
print(f"ZeroGPU API /release error: {res} ({reason})", file=sys.stderr)
def _get_token(request: gr.Request | None) -> str | None:
if request is None: return None
headers = getattr(request, 'headers', None)
if headers is None or not hasattr(headers, '__dict__'):
print("ZeroGPU client error: Internal Gradio error (headers not found)", file=sys.stderr)
return None
if not hasattr(headers, 'get'):
headers = headers.__dict__
return headers.get(TOKEN_HEADER.lower())
def _get_token_and_payload(request: gr.Request | None) -> tuple[str | None, dict[str, Any]]:
token = _get_token(request)
if token is None: return None, {}
payload = jwt_payload(token)
return token, payload
def compute_base_free_memory(total_memory: int) -> int:
pytorch_base_memory = 309002240
return total_memory - pytorch_base_memory - Config.zerogpu_cuda_reserved_memory
CUDA_DEVICE_NAME_STATIC = Config.zerogpu_cuda_device_name
CUDA_TOTAL_MEMORY_STATIC = Config.zerogpu_cuda_total_memory
CUDA_MEM_GET_INFO_STATIC = (compute_base_free_memory(CUDA_TOTAL_MEMORY_STATIC), CUDA_TOTAL_MEMORY_STATIC)
CUDA_DEVICE_CAPABILITY_STATIC = (Config.zerogpu_cuda_capability_major, Config.zerogpu_cuda_capability_minor)
CUDA_DEVICE_PROPERTIES_STATIC = SimpleNamespace(name=CUDA_DEVICE_NAME_STATIC, major=CUDA_DEVICE_CAPABILITY_STATIC[0], minor=CUDA_DEVICE_CAPABILITY_STATIC[1], total_memory=CUDA_TOTAL_MEMORY_STATIC, multi_processor_count=Config.zerogpu_cuda_multi_processor_count)
if torch:
class MockCudaRuntime:
def setDevice(self, device):
pass
def getDevice(self):
return 0
def deviceSynchronize(self):
pass
def deviceGetStreamPriorityRange(self):
return 0, 0
cudart = MockCudaRuntime()
if torch and torch.version.cuda.startswith("12."):
CUDA_MEMORY_STATS_AS_NESTED_DICT_STATIC = {"num_alloc_retries": 0, "num_ooms": 0, "max_split_size": -1, "num_sync_all_streams": 0, "num_device_alloc": 0, "num_device_free": 0, "allocation": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "segment": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "active": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "inactive_split": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "allocated_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "reserved_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "active_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "inactive_split_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "requested_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "oversize_allocations": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "oversize_segments": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}
else:
CUDA_MEMORY_STATS_AS_NESTED_DICT_STATIC = {"num_alloc_retries": 0, "num_ooms": 0, "max_split_size": -1, "allocation": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "segment": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "active": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "inactive_split": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "allocated_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "reserved_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "active_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "inactive_split_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "requested_bytes": {"all": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "small_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "large_pool": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}, "oversize_allocations": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}, "oversize_segments": {"current": 0, "peak": 0, "allocated": 0, "freed": 0}}
def cudaMemGetInfo(device: int, /):
return CUDA_MEM_GET_INFO_STATIC
PAGE_SIZE = 4096
try:
TOTAL_MEMORY = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES')
except (ValueError, AttributeError):
TOTAL_MEMORY = 8 * (1024**3)
VM_MAX_SIZE = min(2**38, TOTAL_MEMORY // 2)
BUFFER_SIZE = 128 * 2**20
BUFFER_COUNT = 2
if torch:
TensorWithSizes: TypeAlias = 'tuple[torch.Tensor, int, int]'
if torch:
@dataclass
class ZeroGPUTensorPack:
base_dir: str
batches: list[list[TensorWithSizes]]
big_tensors: list[list[TensorWithSizes]]
fakes: dict[torch.Tensor, list[torch.Tensor]]
total_size: int
def path(self):
return f'{self.base_dir}/{id(self)}'
def __del__(self):
try:
os.remove(self.path())
except (FileNotFoundError, TypeError, AttributeError):
pass
def write_packing(fd: int, tensor: torch.Tensor):
try:
clone = torch.empty_like(tensor)
size = clone.untyped_storage().size()
buffer = torch.UntypedStorage(VM_MAX_SIZE)
buffer_ptr = buffer.data_ptr()
offset = -buffer_ptr % PAGE_SIZE
padding = -size % PAGE_SIZE
clone.set_(buffer[offset:offset + size], 0, clone.shape, clone.stride())
clone.copy_(tensor)
mv = memoryview((ctypes.c_char * (size + padding)).from_address(buffer_ptr + offset))
written_bytes = 0
while written_bytes < size:
written_bytes += os.write(fd, mv[written_bytes:])
except Exception as e:
print(f"Error during tensor write packing: {e}", file=sys.stderr)
def pack_tensors(tensors: set[torch.Tensor], fakes: dict[torch.Tensor, list[torch.Tensor]], offload_dir: str, callback: Callable[[int], None] | None = None):
callback = (lambda b: None) if callback is None else callback
batches: list[list[TensorWithSizes]] = []
big_tensors: list[list[TensorWithSizes]] = []
tensors_with_sizes: list[tuple[torch.Tensor, int, int]] = []
for tensor in tensors:
size = tensor.numel() * tensor.element_size()
aligned_size = size + (-size % PAGE_SIZE)
tensors_with_sizes.append((tensor, size, aligned_size))
current_batch, current_size = [], 0
for (tensor, size, aligned_size) in sorted(tensors_with_sizes, key=lambda item: item[2]):
if aligned_size > BUFFER_SIZE:
big_tensors.append((tensor, size, aligned_size))
continue
current_size += aligned_size
if current_size > BUFFER_SIZE:
batches.append(current_batch)
current_batch, current_size = [(tensor, size, aligned_size)], aligned_size
else:
current_batch.append((tensor, size, aligned_size))
if current_batch:
batches.append(current_batch)
get_meta = {tensor: empty_like_raw_alloc(tensor) for tensor in tensors}
batches_meta = [[(get_meta[tensor], size, asize) for tensor, size, asize in batch] for batch in batches]
big_tensors_meta = [(get_meta[tensor], size, asize) for tensor, size, asize in big_tensors]
fakes_meta = {get_meta[tensor]: fake_list for tensor, fake_list in fakes.items()}
pack = ZeroGPUTensorPack(base_dir=offload_dir, batches=batches_meta, big_tensors=big_tensors_meta, fakes=fakes_meta, total_size=sum([size for _, size, _ in tensors_with_sizes]))
fd = -1
try:
fd = os.open(pack.path(), os.O_CREAT | os.O_WRONLY | os.O_DIRECT)
total_asize = sum([aligned_size for batch in batches for *_, aligned_size in batch])
total_asize += sum([aligned_size for *_, aligned_size in big_tensors])
if total_asize > 0:
os.posix_fallocate(fd, 0, total_asize)
for batch in batches:
for tensor, size, _ in batch:
write_packing(fd, tensor)
callback(size)
for tensor, size, _ in big_tensors:
write_packing(fd, tensor)
callback(size)
return pack
except Exception as e:
print(f"Failed to pack tensors to disk: {e}", file=sys.stderr)
return pack
finally:
if fd != -1:
os.close(fd)
def pack_to_cuda(pack: ZeroGPUTensorPack, callback: Callable[[int], None] | None = None):
callback = (lambda b: None) if callback is None else callback
free_buffers: ThreadQueue[torch.Tensor] = ThreadQueue()
read_buffers: ThreadQueue[torch.Tensor] = ThreadQueue()
for _ in range(BUFFER_COUNT):
free_buffers.put(torch.ByteTensor(BUFFER_SIZE).pin_memory())
def read(fd: int, buffer: torch.Tensor, size: int):
mv = memoryview((ctypes.c_char * size).from_address(buffer.data_ptr()))
read_bytes = 0
while read_bytes < size:
read_bytes += os.readv(fd, [mv[read_bytes:]])
def disk_to_pin(fd: int):
for batch in pack.batches:
buffer = free_buffers.get()
batch_size = sum([aligned_size for *_, aligned_size in batch])
read(fd, buffer, batch_size)
read_buffers.put(buffer)
for *_, aligned_size in pack.big_tensors:
read_bytes = 0
while read_bytes < aligned_size:
buffer = free_buffers.get()
read_size = min(BUFFER_SIZE, aligned_size - read_bytes)
read(fd, buffer, read_size)
read_buffers.put(buffer)
read_bytes += read_size
def pin_to_cuda():
total_duration_in_callback = 0
for batch in pack.batches:
buffer = read_buffers.get()
offset = 0
cuda_storages = []
for tensor, size, aligned_size in batch:
cuda_storages.append(buffer[offset:offset + size].cuda(non_blocking=True))
offset += aligned_size
torch.cuda.synchronize()
free_buffers.put(buffer)
batch_total_size = 0
for (tensor, size, _), cuda_storage in zip(batch, cuda_storages):
cuda_tensor = torch.tensor([], dtype=tensor.dtype, device='cuda')
cuda_tensor = cuda_tensor.set_(cuda_storage.untyped_storage(), 0, tensor.shape, tensor.stride())
for fake in pack.fakes[tensor]:
fake.data = cuda_tensor
batch_total_size += size
t0 = time.perf_counter()
callback(batch_total_size)
total_duration_in_callback += time.perf_counter() - t0
for tensor, size, _ in pack.big_tensors:
cuda_storage = torch.empty(size, dtype=torch.uint8, device='cuda')
offset = 0
while offset < size:
buffer = read_buffers.get()
read_size = min(BUFFER_SIZE, size - offset)
cuda_storage[offset:offset + read_size] = buffer[:read_size]
offset += read_size
torch.cuda.synchronize()
free_buffers.put(buffer)
t0 = time.perf_counter()
callback(read_size)
total_duration_in_callback += time.perf_counter() - t0
cuda_tensor = torch.tensor([], dtype=tensor.dtype, device='cuda')
cuda_tensor = cuda_tensor.set_(cuda_storage.untyped_storage(), 0, tensor.shape, tensor.stride())
for fake in pack.fakes[tensor]:
fake.data = cuda_tensor
debug(f"{total_duration_in_callback=}")
fd = -1
try:
with ThreadPoolExecutor(2) as e:
fd = os.open(pack.path(), os.O_RDONLY | os.O_DIRECT)
futures = [e.submit(copy_context().run, disk_to_pin, fd), e.submit(copy_context().run, pin_to_cuda)]
for future in as_completed(futures):
future.result()
except Exception as e:
print(f"Error during pack_to_cuda: {e}", file=sys.stderr)
finally:
if fd != -1:
os.close(fd)
@contextmanager
def cuda_unavailable(torch_module: ModuleType):
_is_available = torch_module.cuda.is_available
torch_module.cuda.is_available = lambda: False
yield
torch_module.cuda.is_available = _is_available
def maybe_import_bitsandbytes():
try:
if torch is None: return None
bnb_version = version.parse(metadata.version('bitsandbytes'))
if bnb_version < version.parse('0.40.0'):
print(f"Warning: ZeroGPU requires bitsandbytes >= 0.40.0 (installed: {bnb_version})", file=sys.stderr)
return None
ctx_factory = (lambda: cuda_unavailable(torch)) if bnb_version < version.parse('0.43.1') else nullcontext
with (ctx := ctx_factory()):
importlib.import_module('bitsandbytes')
if not isinstance(ctx, nullcontext):
print("↑ Those bitsandbytes warnings are expected on ZeroGPU ↑", file=sys.stderr)
return ctx_factory
except (ImportError, metadata.PackageNotFoundError):
return None
except Exception as e:
print(f"Unexpected error during bitsandbytes check: {e}", file=sys.stderr)
return None
bnb_import_context = maybe_import_bitsandbytes()
if bnb_import_context and torch:
from torch.utils.weak import WeakTensorKeyDictionary
with (import_ctx := bnb_import_context()):
CUDASetup = None
if not isinstance(import_ctx, nullcontext):
from bitsandbytes.cuda_setup.main import CUDASetup
from bitsandbytes import cextension, functional
from bitsandbytes.nn import Int8Params, Params4bit
_param_to_8bit = Int8Params.to
_param_cuda_8bit = Int8Params.cuda
_param_to_4bit = Params4bit.to
_param_cuda_4bit = Params4bit.cuda
TensorToArgs_bnb = Tuple[torch.device, torch.dtype, bool, torch.memory_format]
to_ops_8bit: dict[Int8Params, TensorToArgs_bnb | None] = WeakTensorKeyDictionary()
to_ops_4bit: dict[Params4bit, TensorToArgs_bnb | None] = WeakTensorKeyDictionary()
def _to_op_register_8bit(self: Int8Params, *args, **kwargs):
parsed = torch._C._nn._parse_to(*args, **kwargs)
device, *_ = parsed
if not isinstance(device, torch.device) or device.type != 'cuda':
return _param_to_8bit(self, *args, **kwargs)
to_ops_8bit[self] = parsed
return self
def _to_op_register_4bit(self: Params4bit, *args, **kwargs):
parsed = torch._C._nn._parse_to(*args, **kwargs)
device, *_ = parsed
if not isinstance(device, torch.device) or device.type != 'cuda':
return _param_to_4bit(self, *args, **kwargs)
to_ops_4bit[self] = parsed
return self
def _cuda_op_arg_check_bnb(device: Union[torch.device, int, str, None]) -> bool:
if device is None or isinstance(device, int): return True
if isinstance(device, str): device = torch.device(device)
return device.type == 'cuda'
def _cuda_op_register_8bit(self: Int8Params, device: Union[torch.device, int, str, None] = None, **kwargs):
if not _cuda_op_arg_check_bnb(device): return _param_cuda_8bit(self, device, **kwargs)
to_ops_8bit[self] = None
return self
def _cuda_op_register_4bit(self: Params4bit, device: Union[torch.device, int, str, None] = None, **kwargs):
if not _cuda_op_arg_check_bnb(device): return _param_cuda_4bit(self, device, **kwargs)
to_ops_4bit[self] = None
return self
def _patch_bnb():
Int8Params.to = _to_op_register_8bit
Int8Params.cuda = _cuda_op_register_8bit
Params4bit.to = _to_op_register_4bit
Params4bit.cuda = _cuda_op_register_4bit
def _unpatch_bnb():
Int8Params.to = _param_to_8bit
Int8Params.cuda = _param_cuda_8bit
Params4bit.to = _param_to_4bit
Params4bit.cuda = _param_cuda_4bit
def _move_bnb():
if CUDASetup is not None:
CUDASetup._instance = None
importlib.reload(cextension)
functional.lib = cextension.lib
for tensor, parsed_args in to_ops_8bit.items():
dtype, memory_format = (parsed_args[1], parsed_args[3]) if parsed_args else (None, None)
tensor.data = _param_to_8bit(tensor, device='cuda', dtype=dtype, memory_format=memory_format)
for tensor, parsed_args in to_ops_4bit.items():
dtype, memory_format = (parsed_args[1], parsed_args[3]) if parsed_args else (None, None)
tensor.data = _param_to_4bit(tensor, device='cuda', dtype=dtype, memory_format=memory_format)
else:
def _patch_bnb(): pass
def _unpatch_bnb(): pass
def _move_bnb(): pass
patch_bnb = _patch_bnb
unpatch_bnb = _unpatch_bnb
move_bnb = _move_bnb
class _BitsAndBytesManager:
def patch(self): return patch_bnb()
def unpatch(self): return unpatch_bnb()
def move(self): return move_bnb()
if torch:
PINNED_MEMORY_RATIO_LIMIT = 0.1
OPS_INPUTS_CHECK_NO_RETURN = (torch.Tensor.equal,)
OPS_INPUT_CHECK_SELF_RETURN = (torch.Tensor.set_, torch.ops.aten.set_.source_Tensor)
OFFLOADED_ERROR_MESSAGE = "Cannot apply function {} on disk-offloaded Tensor {}"
_tensor_make_subclass = torch.Tensor._make_subclass
_asarray = torch.asarray
_device = torch.device
_cuda_init_v2 = torch._C._cuda_init
_cuda_exchange_device = torch.cuda._exchange_device
_cuda_available_v2 = torch.cuda.is_available
_cuda_device_count_v2 = torch.cuda.device_count
_cuda_current_device_v2 = torch.cuda.current_device
_cuda_synchronize = torch.cuda.synchronize
_cuda_get_device_capability_v2 = torch.cuda.get_device_capability
_cuda_get_device_properties_v2 = torch.cuda.get_device_properties
_cuda_get_device_name_v2 = torch.cuda.get_device_name
_cuda_memory_stats_as_nested_dict = torch.cuda.memory.memory_stats_as_nested_dict
_cuda_cudart = torch.cuda.cudart
_cuda_maybe_exchange_device = getattr(torch.cuda, '_maybe_exchange_device', None)
cuda_aliases: dict[torch.Tensor, torch.Tensor | None] = WeakTensorKeyDictionary()
tensor_packs: list[ZeroGPUTensorPack] = []
class ZeroGPUTensor(torch.Tensor): pass
def empty_fake(tensor: torch.Tensor):
fake = empty_like_raw_alloc(tensor, requires_grad=tensor.requires_grad)
if fake.__class__ != tensor.__class__:
fake = _tensor_make_subclass(tensor.__class__, fake, require_grad=tensor.requires_grad)
return fake
def no_int_device(*args, **kwargs):
if len(args) and isinstance(index := args[0], int):
args = (f'cuda:{index}', *args[1:])
if isinstance(index := kwargs.get('device'), int):
kwargs['device'] = f'cuda:{index}'
return args, kwargs
class ZeroGPUFunctionMode(torch.overrides.TorchFunctionMode):
def __torch_function__(self, func, types, args=(), kwargs: dict[str, Any] | None = None):
kwargs = {} if kwargs is None else kwargs
try:
if func == torch._C._nn._parse_to:
args, kwargs = no_int_device(*args, **kwargs)
return func(*args, **kwargs)
if func == torch.Tensor.cuda or func == torch.Tensor.cpu:
memory_format = kwargs.get("memory_format")
device_str = "cuda" if func == torch.Tensor.cuda else "cpu"
to_kwargs = {"device": device_str}
if memory_format is not None: to_kwargs["memory_format"] = memory_format
return self.__torch_function__(torch.Tensor.to, types, (args[0],), to_kwargs)
if func == torch.Tensor.to and len(args) > 1:
parse_to_args, parse_to_kwargs = no_int_device(*args[1:], **kwargs)
device, dtype, _, memory_format = torch._C._nn._parse_to(*parse_to_args, **parse_to_kwargs)
return self.__torch_function__(torch.Tensor.to, types, (args[0],), {'device': device, 'dtype': dtype, 'memory_format': memory_format})
if func == torch.Tensor.data.__set__:
self_tensor, target = args
if target in cuda_aliases:
if (target_original := cuda_aliases[target]) is None:
print(OFFLOADED_ERROR_MESSAGE.format(torch.overrides.resolve_name(func), target), file=sys.stderr)
return
original = empty_fake(self_tensor)
original.data = target_original
cuda_aliases[self_tensor] = original
elif self_tensor in cuda_aliases:
del cuda_aliases[self_tensor]
self_tensor.data = target
return
if func == torch.Tensor.device.__get__:
tensor, = args
if tensor in cuda_aliases: return torch.device('cuda', index=0)
elif func == torch.Tensor.__repr__:
tensor, = args
if tensor in cuda_aliases:
original = cuda_aliases[tensor] or tensor.to('meta')
original_class = original.__class__
original.__class__ = ZeroGPUTensor
try:
return func(original, **kwargs)
finally:
original.__class__ = original_class
elif func == torch.Tensor.untyped_storage:
tensor, = args
if tensor in cuda_aliases:
if (original := cuda_aliases[tensor]) is None:
print(OFFLOADED_ERROR_MESSAGE.format(torch.overrides.resolve_name(func), tensor), file=sys.stderr)
return None
res = func(original, **kwargs)
res._zerogpu = True
return res
cuda: bool | None = None
if (device := kwargs.get('device')) is not None:
device = torch.device(device)
cuda = device.type == 'cuda'
if cuda: kwargs['device'] = torch.device('cpu')
swapped, inputs_are_cuda = {}, set()
def swap(t: torch.Tensor):
nonlocal inputs_are_cuda
if t not in cuda_aliases:
inputs_are_cuda.add(False)
return t
original = cuda_aliases[t]
if original is None:
print(OFFLOADED_ERROR_MESSAGE.format(torch.overrides.resolve_name(func), t), file=sys.stderr)
return t
swapped[original] = t
inputs_are_cuda.add(True)
return original
args_ = torch.utils._pytree.tree_map_only(torch.Tensor, swap, args)
kwargs_ = torch.utils._pytree.tree_map_only(torch.Tensor, swap, kwargs)
if inputs_are_cuda == {True} and cuda is not False: cuda = True
if len(args) == 1 and torch.utils._python_dispatch.is_traceable_wrapper_subclass(wt := args[0]):
if func in {torch.Tensor.detach, torch.ops.aten.alias.default, torch.ops.aten.clone.default}:
with self: return torch.utils._python_dispatch.transform_subclass(wt, lambda _, t: func(t))
res = func(*args_, **kwargs_)
for original, fake in swapped.items(): fake.data = empty_fake(original)
if func in {torch.ops.aten.index.Tensor, torch.Tensor.__getitem__}:
cuda = args[0] in cuda_aliases
inputs_are_cuda = {cuda}
if (isinstance(res, torch.Tensor) or func in OPS_INPUTS_CHECK_NO_RETURN) and not (func == torch.ops.aten.set_.source_Tensor and len(args_) == 3):
st = args_[0] if len(args_) >= 1 and isinstance(args_[0], torch.Tensor) else None
if (res is not st or func in OPS_INPUT_CHECK_SELF_RETURN) and inputs_are_cuda == {True, False}:
print("RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 (ZeroGPU) and cpu!", file=sys.stderr)
def register(t: torch.Tensor):
if t in swapped and cuda is not False: return swapped[t]
if cuda is not True: return t
fake = empty_fake(t)
cuda_aliases[fake] = t
return fake
return torch.utils._pytree.tree_map_only(torch.Tensor, register, res)
except Exception as e:
print(f"Error in ZeroGPUFunctionMode: {e}", file=sys.stderr)
return func(*args, **kwargs)
class DefaultDispatchMode(torch.utils._python_dispatch.TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs: dict[str, Any] | None = None):
return func(*args, **(kwargs or {}))
function_mode = ZeroGPUFunctionMode()
dispatch_mode = DefaultDispatchMode()
def _untyped_storage_new_register(*args, **kwargs):
cuda = False
if (device := kwargs.get('device')) is not None and device.type == 'cuda':
cuda = True
del kwargs['device']
storage = torch._C.StorageBase.__new__(*args, **kwargs)
if cuda: storage._zerogpu = True
return storage
@property
def _untyped_storage_device(self):
if hasattr(self, '_zerogpu'): return torch.device('cuda', index=0)
return torch._C.StorageBase.device.__get__(self)
def _tensor_make_subclass_function_mode(*args, **kwargs):
with torch._C.DisableTorchFunction():
return function_mode.__torch_function__(_tensor_make_subclass, (), args=args, kwargs=kwargs)
def _asarray_function_mode(*args, **kwargs):
with torch._C.DisableTorchFunction():
return function_mode.__torch_function__(_asarray, (), args=args, kwargs=kwargs)
class _DeviceStringOnlyMeta(type):
def __instancecheck__(cls, instance): return isinstance(instance, _device)
class _DeviceStringOnly(metaclass=_DeviceStringOnlyMeta):
def __new__(cls, *args, **kwargs):
args, kwargs = no_int_device(*args, **kwargs)
return _device(*args, **kwargs)
def _cuda_init_raise_v2():
pass
def _cuda_dummy_exchange_device(device):
assert device in {-1, 0}
return device
def patch_v2():
function_mode.__enter__()
dispatch_mode.__enter__()
torch.Tensor._make_subclass = _tensor_make_subclass_function_mode
torch.UntypedStorage.__new__ = _untyped_storage_new_register
torch.UntypedStorage.device = _untyped_storage_device
torch.asarray = _asarray_function_mode
torch.device = _DeviceStringOnly
torch._C._cuda_init = _cuda_init_raise_v2
torch.cuda._exchange_device = _cuda_dummy_exchange_device
torch.cuda.is_available = lambda: True
torch.cuda.device_count = lambda: 1
torch.cuda.current_device = lambda: 0
torch.cuda.synchronize = lambda *args: None
torch.cuda.get_device_capability = lambda *args, **kwargs: CUDA_DEVICE_CAPABILITY_STATIC
torch.cuda.get_device_properties = lambda *args, **kwargs: CUDA_DEVICE_PROPERTIES_STATIC
torch.cuda.get_device_name = lambda *args, **kwargs: CUDA_DEVICE_NAME_STATIC
torch.cuda.memory.memory_stats_as_nested_dict = lambda *args, **kwargs: CUDA_MEMORY_STATS_AS_NESTED_DICT_STATIC
torch.cuda.cudart = lambda: cudart
if _cuda_maybe_exchange_device is not None: setattr(torch.cuda, '_maybe_exchange_device', _cuda_exchange_device)
_BitsAndBytesManager().patch()
def unpatch_v2():
from contextlib import suppress
try:
dispatch_mode.__exit__(None, None, None)
function_mode.__exit__(None, None, None)
except RuntimeError: pass
torch.Tensor._make_subclass = _tensor_make_subclass
torch.UntypedStorage.__new__ = torch._C.StorageBase.__new__
torch.UntypedStorage.device = torch._C.StorageBase.device
torch.asarray = _asarray
torch.device = _device
torch._C._cuda_init = _cuda_init_v2
torch.cuda._exchange_device = _cuda_exchange_device
torch.cuda.is_available = _cuda_available_v2
torch.cuda.device_count = _cuda_device_count_v2
torch.cuda.current_device = _cuda_current_device_v2
torch.cuda.synchronize = _cuda_synchronize
torch.cuda.get_device_capability = _cuda_get_device_capability_v2
torch.cuda.get_device_properties = _cuda_get_device_properties_v2
torch.cuda.get_device_name = _cuda_get_device_name_v2
torch.cuda.memory.memory_stats_as_nested_dict = _cuda_memory_stats_as_nested_dict
torch.cuda.cudart = _cuda_cudart
if _cuda_maybe_exchange_device is not None: setattr(torch.cuda, '_maybe_exchange_device', _cuda_exchange_device)
_BitsAndBytesManager().unpatch()
def _total_unpacked_size():
tensors = [t for t in cuda_aliases.values() if t is not None]
deduped = {AliasId.from_tensor(t): t for t in tensors}
return sum([t.numel() * t.element_size() for t in deduped.values()])
def _pack_v2_internal(offload_dir: str):
originals, originals_dedup, fakes = set(), {}, defaultdict(list)
for fake, original in cuda_aliases.items():
if original is not None:
original_id = AliasId.from_tensor(original)
if original_id not in originals_dedup:
originals_dedup[original_id] = original
originals.add(original)
fakes[originals_dedup[original_id]].append(fake)
total_size = _total_unpacked_size()
progress_context = tqdm(total=total_size, unit='B', unit_scale=True, desc="ZeroGPU tensors packing") if tqdm is not None and total_size > 0 else nullcontext()
with progress_context as progress:
update = progress.update if progress is not None else lambda _: None
pack = pack_tensors(originals, fakes, offload_dir, callback=update)
tensor_packs.append(pack)
for fake_list in fakes.values():
for fake in fake_list: cuda_aliases[fake] = None
return total_size
def pack_v2():
total_size = _pack_v2_internal(Config.zerogpu_offload_dir)
gc.collect()
malloc_trim()
return total_size
def init_v2(nvidia_uuid: str):
os.environ['CUDA_VISIBLE_DEVICES'] = nvidia_uuid
torch.Tensor([0]).cuda()
def size_v2():
return _total_unpacked_size() + sum([p.total_size for p in tensor_packs])
def _move_v2_internal(callback: Callable[[int], None] | None = None):
cb = callback or (lambda _: None)
pinned_limit, moved = _total_unpacked_size() * PINNED_MEMORY_RATIO_LIMIT, {}
for fake, original in cuda_aliases.items():
if original is not None:
original_id = AliasId.from_tensor(original)
if original_id not in moved:
use_pinned = original.numel() * original.element_size() < pinned_limit
original_cuda = original.pin_memory().cuda(non_blocking=True) if use_pinned else original.cuda()
moved[original_id] = original_cuda
cb(fake.numel() * fake.element_size())
torch.cuda.synchronize()
for fake, original in cuda_aliases.items():
if original is not None: fake.data = moved[AliasId.from_tensor(original)]
for tensor_pack in tensor_packs: pack_to_cuda(tensor_pack, callback=cb)
_BitsAndBytesManager().move()
def move_v2(callback: Callable[[int], None] | None = None):
cb = callback or (lambda _: None)
with ThreadPoolExecutor(1) as e:
e.submit(copy_context().run, _move_v2_internal, callback=cb).result()
torch.cuda.synchronize()
def is_in_bad_fork_v2():
return False
CUDA_DEVICE_NAME_LEGACY, CUDA_TOTAL_MEMORY_LEGACY = 'NVIDIA A100-SXM4-80GB MIG 3g.40gb', 42144366592
CUDA_MEM_GET_INFO_LEGACY = (41911451648, CUDA_TOTAL_MEMORY_LEGACY)
CUDA_DEVICE_CAPABILITY_LEGACY = (8, 0)
CUDA_DEVICE_PROPERTIES_LEGACY = SimpleNamespace(name=CUDA_DEVICE_NAME_LEGACY, major=8, minor=0, total_memory=CUDA_TOTAL_MEMORY_LEGACY, multi_processor_count=42)
GENERIC_METHOD_NAMES = ['arange', 'as_tensor', 'asarray', 'bartlett_window', 'blackman_window', 'empty', 'empty_like', 'empty_strided', 'eye', 'full', 'full_like', 'hamming_window', 'hann_window', 'kaiser_window', 'linspace', 'logspace', 'ones', 'ones_like', 'rand', 'rand_like', 'randint', 'randint_like', 'randn', 'randn_like', 'randperm', 'range', 'sparse_bsc_tensor', 'sparse_bsr_tensor', 'sparse_compressed_tensor', 'sparse_coo_tensor', 'sparse_csc_tensor', 'sparse_csr_tensor', 'tensor', 'tril_indices', 'triu_indices', 'zeros', 'zeros_like']
TO_CUDA = (torch.device('cuda'), None, False, None)
_tensor__deepcopy__, _tensor_to, _tensor_cuda, _tensor_cpu = torch.Tensor.__deepcopy__, torch.Tensor.to, torch.Tensor.cuda, torch.Tensor.cpu
_torch_generics = {name: getattr(torch, name) for name in GENERIC_METHOD_NAMES}
_cuda_init_legacy, _cuda_available_legacy, _cuda_device_count_legacy, _cuda_current_device_legacy = torch._C._cuda_init, torch.cuda.is_available, torch.cuda.device_count, torch.cuda.current_device
_cuda_mem_get_info, _cuda_get_device_capability_legacy, _cuda_get_device_properties_legacy, _cuda_get_device_name_legacy = torch.cuda.mem_get_info, torch.cuda.get_device_capability, torch.cuda.get_device_properties, torch.cuda.get_device_name
TensorToArgs_legacy = Tuple[Optional[torch.device], Optional[torch.dtype], bool, Optional[torch.memory_format]]
to_ops: dict[torch.Tensor, TensorToArgs_legacy] = WeakTensorKeyDictionary()
def _tensor_new_register(*args, **kwargs):
new_tensor = torch._C._TensorBase.__new__(*args, **kwargs)
if (base := getattr(new_tensor, '_base', None)) is not None and base in to_ops:
to_ops[new_tensor] = to_ops[base]
return new_tensor
def _tensor_deepcopy_register(self: torch.Tensor, memo):
new_tensor = _tensor__deepcopy__(self, memo)
if isinstance(new_tensor, torch.Tensor) and self in to_ops:
to_ops[new_tensor] = to_ops[self]
return new_tensor
@property
def _tensor_device_property(self: torch.Tensor):
if self in to_ops: return torch.device(type='cuda', index=0)
del torch.Tensor.device
try: return self.device
finally: torch.Tensor.device = _tensor_device_property
@property
def _tensor_dtype_property(self: torch.Tensor):
if self in to_ops and (to_dtype := to_ops[self][1]) is not None: return to_dtype
del torch.Tensor.dtype
try: return self.dtype
finally: torch.Tensor.dtype = _tensor_dtype_property
def _to_op_register(self: torch.Tensor, *args, **kwargs):
parsed = torch._C._nn._parse_to(*args, **kwargs)
device, dtype, *_ = parsed
to_args = to_ops.pop(self, None)
if device is None:
if to_args is not None:
to_ops[self] = (to_args[0], dtype, *to_args[2:])
return self
return _tensor_to(self, *args, **kwargs)
if device.type != 'cuda':
if to_args is not None and (to_dtype := to_args[1]) is not None:
kwargs = {'dtype': to_dtype, **kwargs}
return _tensor_to(self, *args, **kwargs)
to_ops[self] = parsed
return self
def _cuda_op_arg_check(device: torch.device | int | str | None) -> bool:
if device is None or isinstance(device, int): return True
if isinstance(device, str): device = torch.device(device)
return device.type == 'cuda'
def _cuda_op_register(self: torch.Tensor, device: torch.device | int | str | None = None, **kwargs):
if not _cuda_op_arg_check(device): return _tensor_cuda(self, device, **kwargs)
to_ops[self] = TO_CUDA
return self
def _cpu_op_remove(self: torch.Tensor, **kwargs):
to_args = to_ops.pop(self, None)
if to_args is not None and (to_dtype := to_args[1]) is not None:
return _tensor_to(self, 'cpu', **{'dtype': to_dtype, **kwargs})
return _tensor_cpu(self, **kwargs)
def _cuda_init_raise_legacy():
pass
def _generic_method_register(name: str, *args: Any, **kwargs: Any):
try:
device = torch.device(kwargs.get('device', "cpu"))
except Exception:
return _torch_generics[name](*args, **kwargs)
if device.type != 'cuda':
return _torch_generics[name](*args, **kwargs)
tensor = _torch_generics[name](*args, **{**kwargs, 'device': "cpu"})
to_ops[tensor] = TO_CUDA
return tensor
def patch_legacy():
torch.Tensor.__deepcopy__ = _tensor_deepcopy_register
torch.Tensor.__new__ = _tensor_new_register
torch.Tensor.to = _to_op_register
torch.Tensor.cuda = _cuda_op_register
torch.Tensor.cpu = _cpu_op_remove
if Config.zero_patch_torch_device:
torch.Tensor.device = _tensor_device_property
torch.Tensor.dtype = _tensor_dtype_property
for name in GENERIC_METHOD_NAMES: setattr(torch, name, partial(_generic_method_register, name))
torch._C._cuda_init = _cuda_init_raise_legacy
torch.cuda.is_available = lambda: True
torch.cuda.device_count = lambda: 1
torch.cuda.current_device = lambda: 0
torch.cuda.mem_get_info = lambda *args, **kwargs: CUDA_MEM_GET_INFO_LEGACY
torch.cuda.get_device_capability = lambda *args, **kwargs: CUDA_DEVICE_CAPABILITY_LEGACY
torch.cuda.get_device_properties = lambda *args, **kwargs: CUDA_DEVICE_PROPERTIES_LEGACY
torch.cuda.get_device_name = lambda *args, **kwargs: CUDA_DEVICE_NAME_LEGACY
_BitsAndBytesManager().patch()
def unpatch_legacy():
from contextlib import suppress
torch.Tensor.__deepcopy__ = _tensor__deepcopy__
with suppress(AttributeError): del torch.Tensor.__new__
torch.Tensor.to = _tensor_to
torch.Tensor.cuda = _tensor_cuda
torch.Tensor.cpu = _tensor_cpu
with suppress(AttributeError): del torch.Tensor.device
with suppress(AttributeError): del torch.Tensor.dtype
for name in GENERIC_METHOD_NAMES: setattr(torch, name, _torch_generics[name])
torch._C._cuda_init = _cuda_init_legacy
torch.cuda.is_available = _cuda_available_legacy
torch.cuda.device_count = _cuda_device_count_legacy
torch.cuda.current_device = _cuda_current_device_legacy
torch.cuda.mem_get_info = _cuda_mem_get_info
torch.cuda.get_device_capability = _cuda_get_device_capability_legacy
torch.cuda.get_device_properties = _cuda_get_device_properties_legacy
torch.cuda.get_device_name = _cuda_get_device_name_legacy
_BitsAndBytesManager().unpatch()
def pack_legacy(): return 0
def init_legacy(nvidia_uuid: str):
os.environ['CUDA_VISIBLE_DEVICES'] = nvidia_uuid
torch.Tensor([0]).cuda()
def size_legacy(): return 0
def move_legacy(callback: Callable[[int], None] | None = None):
for tensor, parsed_args in to_ops.items():
_, dtype, _, memory_format = parsed_args
tensor.data = _tensor_to(tensor, device='cuda', dtype=dtype, memory_format=memory_format)
_BitsAndBytesManager().move()
torch.cuda.synchronize()
def is_in_bad_fork_legacy():
return False
if torch:
try:
num_threads = torch.get_num_threads()
torch.set_num_interop_threads(num_threads)
except RuntimeError: pass
if Config.zero_gpu_v2:
_patch, _unpatch, _pack, _init, _size, _move, _is_in_bad_fork = patch_v2, unpatch_v2, pack_v2, init_v2, size_v2, move_v2, is_in_bad_fork_v2
else:
_patch, _unpatch, _pack, _init, _size, _move, _is_in_bad_fork = patch_legacy, unpatch_legacy, pack_legacy, init_legacy, size_legacy, move_legacy, is_in_bad_fork_legacy
else:
def _placeholder_func(*args, **kwargs): pass
def _placeholder_zero(*args, **kwargs): return 0
def _placeholder_false(*args, **kwargs): return False
_patch, _unpatch, _init, _move = _placeholder_func, _placeholder_func, _placeholder_func, _placeholder_func
_pack, _size = _placeholder_zero, _placeholder_zero
_is_in_bad_fork = _placeholder_false
patch_torch, unpatch_torch, pack_torch, init_torch, size_torch, move_torch, is_in_bad_fork_torch = _patch, _unpatch, _pack, _init, _size, _move, _is_in_bad_fork
_patch_torch_global = patch_torch
_unpatch_torch_global = unpatch_torch
GENERATOR_GLOBAL_TIMEOUT = 20 * 60
SPAWN_PROGRESS_CLEANUP, SPAWN_PROGRESS_INIT = 0.1, 0.1
forked = False
class Worker(Generic[Res]):
thread: Thread
arg_queue: "SimpleQueue[tuple[Params, GradioPartialContext]]"
res_queue: "SimpleQueue[Res | None]"
_sentinel: "Thread"
def __init__(self, task: Callable, is_generator: bool, allow_token: str, nvidia_uuid: str):
self._sentinel = Thread(target=self._close_on_exit, daemon=True)
self.arg_queue = SimpleQueue()
self.res_queue = SimpleQueue()
args = task, is_generator, self.arg_queue, self.res_queue, allow_token, nvidia_uuid, []
self.thread = Thread(target=self._worker_thread_wrapper, args=args, daemon=True)
self.thread.start()
self._sentinel.start()
def _worker_thread_wrapper(self, task: Callable[..., Any], is_generator: bool, arg_queue: SimpleQueue[tuple[Params, GradioPartialContext]], res_queue: SimpleQueue[Any | None], allow_token: str, nvidia_uuid: str, fds: list[int]):
global forked
forked = True
initialized = False
while True:
try:
(args, kwargs), gradio_context = arg_queue.get()
except (OSError, EOFError): break
if not initialized:
if (init_res := worker_init(res_queue=res_queue, allow_token=allow_token, nvidia_uuid=nvidia_uuid, fds=fds)) is not None:
res_queue.put(init_res)
return
initialized = True
GradioPartialContext.apply(gradio_context)
context = copy_context()
if is_generator:
def iterate():
try:
gen = task(*args, **kwargs)
for res in gen:
try:
res_queue.put(OkResult(res))
except Exception as e:
res_queue.put(exception_result(e))
break
except Exception as e:
res_queue.put(exception_result(e))
finally:
res_queue.put(EndResult())
with ThreadPoolExecutor(1) as executor:
executor.submit(context.run, iterate)
else:
def run_task():
try:
res = OkResult(task(*args, **kwargs))
except Exception as e:
res = exception_result(e)
try:
res_queue.put(res)
except Exception as e:
res_queue.put(exception_result(e))
with ThreadPoolExecutor(1) as executor:
future = executor.submit(context.run, run_task)
future.result()
def _close_on_exit(self):
self.thread.join()
self.arg_queue.close()
try:
self.res_queue.wlock_release()
except Exception:
pass
self.res_queue.put(None)
def worker_init(res_queue: Union["SimpleQueue[RegularResQueueResult | None]", "SimpleQueue[GeneratorResQueueResult | None]"], allow_token: str, nvidia_uuid: str, fds: list[int]) -> Optional[ExceptionResult]:
for fd in fds:
try:
os.close(fd)
except Exception as e:
if isinstance(e, OSError) and e.errno == 9: pass
return exception_result(e)
try:
pass
except Exception as e:
print(f"Error while trying to remove tqdm multiprocessing lock: {e}", file=sys.stderr)
progress_context = tqdm(total=100, desc="ZeroGPU init", file=open(os.devnull, 'w')) if tqdm is not None and Config.zero_gpu_v2 else nullcontext()
try:
patch_gradio_queue(res_queue)
with progress_context as p_bar:
current_progress = 0
def update(n: float):
nonlocal current_progress
current_progress += n
if p_bar is not None and hasattr(p_bar, 'n'):
p_bar.update(round(current_progress * 100) - p_bar.n)
allow(allow_token)
update(SPAWN_PROGRESS_CLEANUP)
_unpatch_torch_global()
init_torch(nvidia_uuid)
update(SPAWN_PROGRESS_INIT)
callback = None
if (transfer_size := size_torch()) > 0:
remaining = 1 - (SPAWN_PROGRESS_CLEANUP + SPAWN_PROGRESS_INIT)
def _callback(n): return update(n * remaining / transfer_size)
callback = _callback
move_torch(callback=callback)
_patch_torch_global()
except Exception as e:
return exception_result(e)
return None
def process_duration(duration: Duration | None) -> timedelta:
return timedelta(seconds=0)
def static_duration(duration: DynamicDuration[Param], *args: Param.args, **kwargs: Param.kwargs) -> timedelta:
return timedelta(seconds=0)
def exception_result(exc: Exception) -> ExceptionResult:
formatted = "".join(list(map(str, sys.exc_info())))
return ExceptionResult(traceback=formatted, error_cls=exc.__class__.__name__)
def regular_function_wrapper(task: Callable[Param, Res], duration: DynamicDuration[Param]) -> Callable[Param, Optional[Res]]:
request_var_getter = gradio_request_var
workers: dict[NvidiaIndex, Worker[RegularResQueueResult[Res] | None]] = {}
task_id = id(task)
@wraps(task)
def gradio_handler(*args: Param.args, **kwargs: Param.kwargs) -> Optional[Res]:
if forked:
return task(*args, **kwargs)
try:
request_var = request_var_getter()
request = request_var.get(None) if request_var else None
duration_ = static_duration(duration, *args, **kwargs)
schedule_response = schedule(task_id=task_id, request=request, duration=duration_)
if schedule_response is None:
pass
allow_token, nvidia_index, nvidia_uuid = schedule_response.allowToken, schedule_response.nvidiaIndex, schedule_response.nvidiaUUID
release_fn = partial(release, allow_token)
worker = workers.pop(nvidia_index, None)
if not (worker and worker.thread.is_alive() and schedule_response.idle):
worker = Worker(task, False, allow_token, nvidia_uuid)
worker.arg_queue.put(((args, kwargs), GradioPartialContext.get()))
while True:
res = worker.res_queue.get()
if res is None:
release_fn(fail=True, allow_404=True)
pass
if isinstance(res, ExceptionResult):
release_fn(fail=True)
pass
if isinstance(res, OkResult):
release_fn()
workers[nvidia_index] = worker
return res.value
if isinstance(res, GradioQueueEvent):
try_process_queue_event(res.method_name, *res.args, **res.kwargs)
continue
assert_never(res)
except Exception as e:
print(f"GPU process operation failed: {e}. Falling back to CPU execution.", file=sys.stderr)
_unpatch_torch_global()
try:
return task(*args, **kwargs)
except Exception as cpu_e:
print(f"CPU fallback execution also failed: {cpu_e}", file=sys.stderr)
return None
finally:
_patch_torch_global()
if not hasattr(task, '__annotations__'):
gradio_handler.__annotations__ = {}
return gradio_handler
def generator_function_wrapper(task: Callable[Param, Generator[Res, None, None]], duration: DynamicDuration[Param]) -> Callable[Param, Generator[Res, None, None]]:
request_var_getter = gradio_request_var
workers: dict[NvidiaIndex, Worker[GeneratorResQueueResult[Res] | None]] = {}
task_id = id(task)
@wraps(task)
def gradio_handler(*args: Param.args, **kwargs: Param.kwargs) -> Generator[Res, None, None]:
if forked:
yield from task(*args, **kwargs)
return
try:
request_var = request_var_getter()
request = request_var.get(None) if request_var else None
duration_ = static_duration(duration, *args, **kwargs)
schedule_response = schedule(task_id=task_id, request=request, duration=duration_)
if schedule_response is None:
pass
allow_token, nvidia_index, nvidia_uuid = schedule_response.allowToken, schedule_response.nvidiaIndex, schedule_response.nvidiaUUID
release_fn = partial(release, allow_token)
worker = workers.pop(nvidia_index, None)
if not (worker and worker.thread.is_alive() and schedule_response.idle):
worker = Worker(task, True, allow_token, nvidia_uuid)
worker.arg_queue.put(((args, kwargs), GradioPartialContext.get()))
yield_queue: ThreadQueue[YieldQueueResult[Res]] = ThreadQueue()
def fill_yield_queue(worker_instance):
while True:
res = worker_instance.res_queue.get()
if res is None:
release_fn(fail=True, allow_404=True)
yield_queue.put(AbortedResult())
return
if isinstance(res, ExceptionResult):
release_fn(fail=True)
yield_queue.put(res)
return
if isinstance(res, EndResult):
release_fn()
workers[nvidia_index] = worker_instance
yield_queue.put(EndResult())
return
if isinstance(res, OkResult):
yield_queue.put(OkResult(res.value))
continue
if isinstance(res, GradioQueueEvent):
try_process_queue_event(res.method_name, *res.args, **res.kwargs)
continue
assert_never(res)
with ThreadPoolExecutor(1) as e:
e.submit(copy_context().run, fill_yield_queue, worker)
while True:
try:
res = yield_queue.get(timeout=GENERATOR_GLOBAL_TIMEOUT)
except Empty:
pass
if isinstance(res, AbortedResult):
pass
if isinstance(res, ExceptionResult):
pass
if isinstance(res, EndResult):
return
if isinstance(res, OkResult):
yield res.value
continue
assert_never(res)
except Exception as e:
print(f"GPU generator process operation failed: {e}. Falling back to CPU execution.", file=sys.stderr)
_unpatch_torch_global()
try:
yield from task(*args, **kwargs)
except Exception as cpu_e:
print(f"CPU fallback execution for generator also failed: {cpu_e}", file=sys.stderr)
finally:
_patch_torch_global()
if not hasattr(task, '__annotations__'):
gradio_handler.__annotations__ = {}
return gradio_handler
P_decorator = ParamSpec('P_decorator')
R_decorator = TypeVar('R_decorator')
decorated_cache: dict[Callable, Callable] = {}
@overload
def GPU(task: None = None, *, duration: DynamicDuration[P_decorator] = 0) -> Callable[[Callable[P_decorator, R_decorator]], Callable[P_decorator, R_decorator]]: ...
@overload
def GPU(task: Callable[P_decorator, R_decorator], *, duration: DynamicDuration[P_decorator] = 0) -> Callable[P_decorator, R_decorator]: ...
def GPU(task: Optional[Callable[P_decorator, R_decorator]] = None, *, duration: DynamicDuration[P_decorator] = 0, **kwargs: Unpack[EmptyKwargs]) -> Union[Callable[[Callable[P_decorator, R_decorator]], Callable[P_decorator, R_decorator]], Callable[P_decorator, R_decorator]]:
if "enable_queue" in kwargs:
warnings.warn("`enable_queue` parameter is now ignored and always set to `True`")
if task is None:
return partial(_GPU, duration=duration)
return _GPU(task, duration)
def _GPU(task: Callable[P_decorator, R_decorator], duration: DynamicDuration[P_decorator]) -> Callable[P_decorator, R_decorator]:
if not Config.zero_gpu:
return task
if sys.version_info.minor < 9:
print("Error: Actually using @spaces.GPU on a ZeroGPU Space requires Python 3.9+", file=sys.stderr)
return task
if task in decorated_cache:
return decorated_cache[task]
if inspect.iscoroutinefunction(task):
print("Error: Coroutine functions are not supported by @spaces.GPU.", file=sys.stderr)
return task
if inspect.isgeneratorfunction(task):
decorated = generator_function_wrapper(task, duration)
else:
decorated = regular_function_wrapper(task, duration)
setattr(decorated, 'zerogpu', True)
decorated_cache.update({task: decorated, decorated: decorated})
return decorated
gradio_auto_wrap_enabled = Config.gradio_auto_wrap
def disable_gradio_auto_wrap() -> None:
global gradio_auto_wrap_enabled
gradio_auto_wrap_enabled = False
def enable_gradio_auto_wrap() -> None:
global gradio_auto_wrap_enabled
gradio_auto_wrap_enabled = True
@overload
def gradio_auto_wrap(task: Callable[Param, Res]) -> Callable[Param, Res]: ...
@overload
def gradio_auto_wrap(task: None) -> None: ...
def gradio_auto_wrap(task: Optional[Callable[Param, Res]]) -> Optional[Callable[Param, Res]]:
if not gradio_auto_wrap_enabled or not callable(task):
return task
if getattr(task, 'zerogpu', False):
return task
return GPU(task)
def _patch_gradio_auto_wrap():
if not Config.zero_gpu or not Config.gradio_auto_wrap:
return
try:
from gradio.blocks import Block
_original_set_event_trigger = Block.set_event_trigger
except (ImportError, AttributeError):
print("Warning: Could not find gradio.blocks.Block.set_event_trigger for auto-wrap patching. Auto-wrap disabled.", file=sys.stderr)
return
@wraps(_original_set_event_trigger)
def _new_set_event_trigger(self, event_name: str, fn: Union[Callable, List[Callable], None], inputs, outputs, **kwargs):
if fn is None:
return _original_set_event_trigger(self, event_name, fn, inputs, outputs, **kwargs)
if isinstance(fn, list):
wrapped_fns = [gradio_auto_wrap(f) for f in fn]
return _original_set_event_trigger(self, event_name, wrapped_fns, inputs, outputs, **kwargs)
else:
wrapped_fn = gradio_auto_wrap(fn)
return _original_set_event_trigger(self, event_name, wrapped_fn, inputs, outputs, **kwargs)
Block.set_event_trigger = _new_set_event_trigger
print("Gradio Block event trigger patched for ZeroGPU auto-wrap.", file=sys.stderr)
if sys.version_info.minor < 8:
print("Warning: Importing PySpaces requires Python 3.8+", file=sys.stderr)
try:
if (gr_module := sys.modules.get("gradio")) is not None:
getattr(gr_module, 'Blocks')
except AttributeError:
print("ImportError: Gradio does not have 'Blocks' attribute. Please check your Gradio installation.", file=sys.stderr)
pass
def aoti_apply(compiled_fn: Any, module: Any):
if torch is None:
return module
if hasattr(module, 'to') and isinstance(module, torch.nn.Module):
module.to(device="cpu")
return module
__all__ = ["GPU", "gradio_auto_wrap", "disable_gradio_auto_wrap", "enable_gradio_auto_wrap", "aoti_apply"]
if Config.zero_gpu:
try:
if is_in_bad_fork_torch():
pass
except Exception as e:
print(f"Could not check for bad fork: {e}", file=sys.stderr)
def startup():
total_size = pack_torch()
_patch_gradio_auto_wrap()
if Config.zerogpu_size == 'auto':
gpu_size = 'medium' if total_size < Config.zerogpu_medium_size_threshold else 'large'
else:
gpu_size = Config.zerogpu_size
startup_report_client(self_cgroup_device_path(), gpu_size)
_patch_torch_global()
one_launch(startup)
try:
shutil.rmtree(Config.zerogpu_offload_dir, ignore_errors=True)
Path(Config.zerogpu_offload_dir).mkdir(parents=True, exist_ok=True)
except Exception as e:
print(f"Could not prepare ZeroGPU offload directory: {e}", file=sys.stderr)