SHAP_DEMO / models.py
xxnithicxx's picture
Add text SHAP
3397acd
import torch
import torchvision
from torchvision import datasets, transforms
from torch import nn, optim
from torch.nn import functional as F
# Cấu hình
BATCH_SIZE = 128
DEVICE = torch.device('cpu')
class Net(nn.Module):
"""Mạng CNN cho phân loại MNIST"""
def __init__(self):
super(Net, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv2d(1, 10, kernel_size=5),
nn.MaxPool2d(2),
nn.ReLU(),
nn.Conv2d(10, 20, kernel_size=5),
nn.Dropout(),
nn.MaxPool2d(2),
nn.ReLU(),
)
self.fc_layers = nn.Sequential(
nn.Linear(320, 50),
nn.ReLU(),
nn.Dropout(),
nn.Linear(50, 10),
nn.Softmax(dim=1)
)
def forward(self, x):
x = self.conv_layers(x)
x = x.view(-1, 320)
x = self.fc_layers(x)
return x
def train(model, device, train_loader, optimizer, epoch):
"""Hàm train model cho 1 epoch"""
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output.log(), target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader):
"""Hàm test model"""
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output.log(), target).item()
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
# Tạo data loaders
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('mnist_data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('mnist_data', train=False, transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=BATCH_SIZE, shuffle=True)
def train_model(model, num_epochs):
"""Hàm train model với số epochs chỉ định"""
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
for epoch in range(1, num_epochs + 1):
train(model, DEVICE, train_loader, optimizer, epoch)
test(model, DEVICE, test_loader)