Spaces:
Sleeping
Sleeping
| import torch | |
| import torchvision | |
| from torchvision import datasets, transforms | |
| from torch import nn, optim | |
| from torch.nn import functional as F | |
| # Cấu hình | |
| BATCH_SIZE = 128 | |
| DEVICE = torch.device('cpu') | |
| class Net(nn.Module): | |
| """Mạng CNN cho phân loại MNIST""" | |
| def __init__(self): | |
| super(Net, self).__init__() | |
| self.conv_layers = nn.Sequential( | |
| nn.Conv2d(1, 10, kernel_size=5), | |
| nn.MaxPool2d(2), | |
| nn.ReLU(), | |
| nn.Conv2d(10, 20, kernel_size=5), | |
| nn.Dropout(), | |
| nn.MaxPool2d(2), | |
| nn.ReLU(), | |
| ) | |
| self.fc_layers = nn.Sequential( | |
| nn.Linear(320, 50), | |
| nn.ReLU(), | |
| nn.Dropout(), | |
| nn.Linear(50, 10), | |
| nn.Softmax(dim=1) | |
| ) | |
| def forward(self, x): | |
| x = self.conv_layers(x) | |
| x = x.view(-1, 320) | |
| x = self.fc_layers(x) | |
| return x | |
| def train(model, device, train_loader, optimizer, epoch): | |
| """Hàm train model cho 1 epoch""" | |
| model.train() | |
| for batch_idx, (data, target) in enumerate(train_loader): | |
| data, target = data.to(device), target.to(device) | |
| optimizer.zero_grad() | |
| output = model(data) | |
| loss = F.nll_loss(output.log(), target) | |
| loss.backward() | |
| optimizer.step() | |
| if batch_idx % 100 == 0: | |
| print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
| epoch, batch_idx * len(data), len(train_loader.dataset), | |
| 100. * batch_idx / len(train_loader), loss.item())) | |
| def test(model, device, test_loader): | |
| """Hàm test model""" | |
| model.eval() | |
| test_loss = 0 | |
| correct = 0 | |
| with torch.no_grad(): | |
| for data, target in test_loader: | |
| data, target = data.to(device), target.to(device) | |
| output = model(data) | |
| test_loss += F.nll_loss(output.log(), target).item() | |
| pred = output.max(1, keepdim=True)[1] | |
| correct += pred.eq(target.view_as(pred)).sum().item() | |
| test_loss /= len(test_loader.dataset) | |
| print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
| test_loss, correct, len(test_loader.dataset), | |
| 100. * correct / len(test_loader.dataset))) | |
| # Tạo data loaders | |
| train_loader = torch.utils.data.DataLoader( | |
| datasets.MNIST('mnist_data', train=True, download=True, | |
| transform=transforms.Compose([ | |
| transforms.ToTensor() | |
| ])), | |
| batch_size=BATCH_SIZE, shuffle=True) | |
| test_loader = torch.utils.data.DataLoader( | |
| datasets.MNIST('mnist_data', train=False, transform=transforms.Compose([ | |
| transforms.ToTensor() | |
| ])), | |
| batch_size=BATCH_SIZE, shuffle=True) | |
| def train_model(model, num_epochs): | |
| """Hàm train model với số epochs chỉ định""" | |
| optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) | |
| for epoch in range(1, num_epochs + 1): | |
| train(model, DEVICE, train_loader, optimizer, epoch) | |
| test(model, DEVICE, test_loader) | |