Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import pandas as pd | |
| import torch | |
| from huggingface_hub import PyTorchModelHubMixin | |
| from tqdm import trange | |
| from .module import * | |
| class KronosTokenizer(nn.Module, PyTorchModelHubMixin): | |
| """ | |
| KronosTokenizer module for tokenizing input data using a hybrid quantization approach. | |
| This tokenizer utilizes a combination of encoder and decoder Transformer blocks | |
| along with the Binary Spherical Quantization (BSQuantizer) to compress and decompress input data. | |
| Args: | |
| d_in (int): Input dimension. | |
| d_model (int): Model dimension. | |
| n_heads (int): Number of attention heads. | |
| ff_dim (int): Feed-forward dimension. | |
| n_enc_layers (int): Number of encoder layers. | |
| n_dec_layers (int): Number of decoder layers. | |
| ffn_dropout_p (float): Dropout probability for feed-forward networks. | |
| attn_dropout_p (float): Dropout probability for attention mechanisms. | |
| resid_dropout_p (float): Dropout probability for residual connections. | |
| s1_bits (int): Number of bits for the pre token in BSQuantizer. | |
| s2_bits (int): Number of bits for the post token in BSQuantizer. | |
| beta (float): Beta parameter for BSQuantizer. | |
| gamma0 (float): Gamma0 parameter for BSQuantizer. | |
| gamma (float): Gamma parameter for BSQuantizer. | |
| zeta (float): Zeta parameter for BSQuantizer. | |
| group_size (int): Group size parameter for BSQuantizer. | |
| """ | |
| def __init__(self, d_in, d_model, n_heads, ff_dim, n_enc_layers, n_dec_layers, ffn_dropout_p, attn_dropout_p, resid_dropout_p, s1_bits, s2_bits, beta, gamma0, gamma, zeta, group_size): | |
| super().__init__() | |
| self.d_in = d_in | |
| self.d_model = d_model | |
| self.n_heads = n_heads | |
| self.ff_dim = ff_dim | |
| self.enc_layers = n_enc_layers | |
| self.dec_layers = n_dec_layers | |
| self.ffn_dropout_p = ffn_dropout_p | |
| self.attn_dropout_p = attn_dropout_p | |
| self.resid_dropout_p = resid_dropout_p | |
| self.s1_bits = s1_bits | |
| self.s2_bits = s2_bits | |
| self.codebook_dim = s1_bits + s2_bits # Total dimension of the codebook after quantization | |
| self.embed = nn.Linear(self.d_in, self.d_model) | |
| self.head = nn.Linear(self.d_model, self.d_in) | |
| # Encoder Transformer Blocks | |
| self.encoder = nn.ModuleList([ | |
| TransformerBlock(self.d_model, self.n_heads, self.ff_dim, self.ffn_dropout_p, self.attn_dropout_p, self.resid_dropout_p) | |
| for _ in range(self.enc_layers - 1) | |
| ]) | |
| # Decoder Transformer Blocks | |
| self.decoder = nn.ModuleList([ | |
| TransformerBlock(self.d_model, self.n_heads, self.ff_dim, self.ffn_dropout_p, self.attn_dropout_p, self.resid_dropout_p) | |
| for _ in range(self.dec_layers - 1) | |
| ]) | |
| self.quant_embed = nn.Linear(in_features=self.d_model, out_features=self.codebook_dim) # Linear layer before quantization | |
| self.post_quant_embed_pre = nn.Linear(in_features=self.s1_bits, out_features=self.d_model) # Linear layer after quantization (pre part - s1 bits) | |
| self.post_quant_embed = nn.Linear(in_features=self.codebook_dim, out_features=self.d_model) # Linear layer after quantization (full codebook) | |
| self.tokenizer = BSQuantizer(self.s1_bits, self.s2_bits, beta, gamma0, gamma, zeta, group_size) # BSQuantizer module | |
| def forward(self, x): | |
| """ | |
| Forward pass of the KronosTokenizer. | |
| Args: | |
| x (torch.Tensor): Input tensor of shape (batch_size, seq_len, d_in). | |
| Returns: | |
| tuple: A tuple containing: | |
| - tuple: (z_pre, z) - Reconstructed outputs from decoder with s1_bits and full codebook respectively, | |
| both of shape (batch_size, seq_len, d_in). | |
| - torch.Tensor: bsq_loss - Loss from the BSQuantizer. | |
| - torch.Tensor: quantized - Quantized representation from BSQuantizer. | |
| - torch.Tensor: z_indices - Indices from the BSQuantizer. | |
| """ | |
| z = self.embed(x) | |
| for layer in self.encoder: | |
| z = layer(z) | |
| z = self.quant_embed(z) # (B, T, codebook) | |
| bsq_loss, quantized, z_indices = self.tokenizer(z) | |
| quantized_pre = quantized[:, :, :self.s1_bits] # Extract the first part of quantized representation (s1_bits) | |
| z_pre = self.post_quant_embed_pre(quantized_pre) | |
| z = self.post_quant_embed(quantized) | |
| # Decoder layers (for pre part - s1 bits) | |
| for layer in self.decoder: | |
| z_pre = layer(z_pre) | |
| z_pre = self.head(z_pre) | |
| # Decoder layers (for full codebook) | |
| for layer in self.decoder: | |
| z = layer(z) | |
| z = self.head(z) | |
| return (z_pre, z), bsq_loss, quantized, z_indices | |
| def indices_to_bits(self, x, half=False): | |
| """ | |
| Converts indices to bit representations and scales them. | |
| Args: | |
| x (torch.Tensor): Indices tensor. | |
| half (bool, optional): Whether to process only half of the codebook dimension. Defaults to False. | |
| Returns: | |
| torch.Tensor: Bit representation tensor. | |
| """ | |
| if half: | |
| x1 = x[0] # Assuming x is a tuple of indices if half is True | |
| x2 = x[1] | |
| mask = 2 ** torch.arange(self.codebook_dim//2, device=x1.device, dtype=torch.long) # Create a mask for bit extraction | |
| x1 = (x1.unsqueeze(-1) & mask) != 0 # Extract bits for the first half | |
| x2 = (x2.unsqueeze(-1) & mask) != 0 # Extract bits for the second half | |
| x = torch.cat([x1, x2], dim=-1) # Concatenate the bit representations | |
| else: | |
| mask = 2 ** torch.arange(self.codebook_dim, device=x.device, dtype=torch.long) # Create a mask for bit extraction | |
| x = (x.unsqueeze(-1) & mask) != 0 # Extract bits | |
| x = x.float() * 2 - 1 # Convert boolean to bipolar (-1, 1) | |
| q_scale = 1. / (self.codebook_dim ** 0.5) # Scaling factor | |
| x = x * q_scale | |
| return x | |
| def encode(self, x, half=False): | |
| """ | |
| Encodes the input data into quantized indices. | |
| Args: | |
| x (torch.Tensor): Input tensor of shape (batch_size, seq_len, d_in). | |
| half (bool, optional): Whether to use half quantization in BSQuantizer. Defaults to False. | |
| Returns: | |
| torch.Tensor: Quantized indices from BSQuantizer. | |
| """ | |
| z = self.embed(x) | |
| for layer in self.encoder: | |
| z = layer(z) | |
| z = self.quant_embed(z) | |
| bsq_loss, quantized, z_indices = self.tokenizer(z, half) | |
| return z_indices | |
| def decode(self, x, half=False): | |
| """ | |
| Decodes quantized indices back to the input data space. | |
| Args: | |
| x (torch.Tensor): Quantized indices tensor. | |
| half (bool, optional): Whether the indices were generated with half quantization. Defaults to False. | |
| Returns: | |
| torch.Tensor: Reconstructed output tensor of shape (batch_size, seq_len, d_in). | |
| """ | |
| quantized = self.indices_to_bits(x, half) | |
| z = self.post_quant_embed(quantized) | |
| for layer in self.decoder: | |
| z = layer(z) | |
| z = self.head(z) | |
| return z | |
| class Kronos(nn.Module, PyTorchModelHubMixin): | |
| """ | |
| Kronos Model. | |
| Args: | |
| s1_bits (int): Number of bits for pre tokens. | |
| s2_bits (int): Number of bits for post tokens. | |
| n_layers (int): Number of Transformer blocks. | |
| d_model (int): Dimension of the model's embeddings and hidden states. | |
| n_heads (int): Number of attention heads in the MultiheadAttention layers. | |
| ff_dim (int): Dimension of the feedforward network in the Transformer blocks. | |
| ffn_dropout_p (float): Dropout probability for the feedforward network. | |
| attn_dropout_p (float): Dropout probability for the attention layers. | |
| resid_dropout_p (float): Dropout probability for residual connections. | |
| token_dropout_p (float): Dropout probability for token embeddings. | |
| learn_te (bool): Whether to use learnable temporal embeddings. | |
| """ | |
| def __init__(self, s1_bits, s2_bits, n_layers, d_model, n_heads, ff_dim, ffn_dropout_p, attn_dropout_p, resid_dropout_p, token_dropout_p, learn_te): | |
| super().__init__() | |
| self.s1_bits = s1_bits | |
| self.s2_bits = s2_bits | |
| self.n_layers = n_layers | |
| self.d_model = d_model | |
| self.n_heads = n_heads | |
| self.learn_te = learn_te | |
| self.ff_dim = ff_dim | |
| self.ffn_dropout_p = ffn_dropout_p | |
| self.attn_dropout_p = attn_dropout_p | |
| self.resid_dropout_p = resid_dropout_p | |
| self.token_dropout_p = token_dropout_p | |
| self.s1_vocab_size = 2 ** self.s1_bits | |
| self.token_drop = nn.Dropout(self.token_dropout_p) | |
| self.embedding = HierarchicalEmbedding(self.s1_bits, self.s2_bits, self.d_model) | |
| self.time_emb = TemporalEmbedding(self.d_model, self.learn_te) | |
| self.transformer = nn.ModuleList([ | |
| TransformerBlock(self.d_model, self.n_heads, self.ff_dim, self.ffn_dropout_p, self.attn_dropout_p, self.resid_dropout_p) | |
| for _ in range(self.n_layers) | |
| ]) | |
| self.norm = RMSNorm(self.d_model) | |
| self.dep_layer = DependencyAwareLayer(self.d_model) | |
| self.head = DualHead(self.s1_bits, self.s2_bits, self.d_model) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, module): | |
| if isinstance(module, nn.Linear): | |
| nn.init.xavier_normal_(module.weight) | |
| if module.bias is not None: | |
| nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| nn.init.normal_(module.weight, mean=0, std=self.embedding.d_model ** -0.5) | |
| elif isinstance(module, nn.LayerNorm): | |
| nn.init.ones_(module.weight) | |
| nn.init.zeros_(module.bias) | |
| elif isinstance(module, RMSNorm): | |
| nn.init.ones_(module.weight) | |
| def forward(self, s1_ids, s2_ids, stamp=None, padding_mask=None, use_teacher_forcing=False, s1_targets=None): | |
| """ | |
| Args: | |
| s1_ids (torch.Tensor): Input tensor of s1 token IDs. Shape: [batch_size, seq_len] | |
| s2_ids (torch.Tensor): Input tensor of s2 token IDs. Shape: [batch_size, seq_len] | |
| stamp (torch.Tensor, optional): Temporal stamp tensor. Shape: [batch_size, seq_len]. Defaults to None. | |
| padding_mask (torch.Tensor, optional): Mask for padding tokens. Shape: [batch_size, seq_len]. Defaults to None. | |
| use_teacher_forcing (bool, optional): Whether to use teacher forcing for s1 decoding. Defaults to False. | |
| s1_targets (torch.Tensor, optional): Target s1 token IDs for teacher forcing. Shape: [batch_size, seq_len]. Defaults to None. | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: | |
| - s1 logits: Logits for s1 token predictions. Shape: [batch_size, seq_len, s1_vocab_size] | |
| - s2_logits: Logits for s2 token predictions, conditioned on s1. Shape: [batch_size, seq_len, s2_vocab_size] | |
| """ | |
| x = self.embedding([s1_ids, s2_ids]) | |
| if stamp is not None: | |
| time_embedding = self.time_emb(stamp) | |
| x = x + time_embedding | |
| x = self.token_drop(x) | |
| for layer in self.transformer: | |
| x = layer(x, key_padding_mask=padding_mask) | |
| x = self.norm(x) | |
| s1_logits = self.head(x) | |
| if use_teacher_forcing: | |
| sibling_embed = self.embedding.emb_s1(s1_targets) | |
| else: | |
| s1_probs = F.softmax(s1_logits.detach(), dim=-1) | |
| sample_s1_ids = torch.multinomial(s1_probs.view(-1, self.s1_vocab_size), 1).view(s1_ids.shape) | |
| sibling_embed = self.embedding.emb_s1(sample_s1_ids) | |
| x2 = self.dep_layer(x, sibling_embed, key_padding_mask=padding_mask) # Dependency Aware Layer: Condition on s1 embeddings | |
| s2_logits = self.head.cond_forward(x2) | |
| return s1_logits, s2_logits | |
| def decode_s1(self, s1_ids, s2_ids, stamp=None, padding_mask=None): | |
| """ | |
| Decodes only the s1 tokens. | |
| This method performs a forward pass to predict only s1 tokens. It returns the s1 logits | |
| and the context representation from the Transformer, which can be used for subsequent s2 decoding. | |
| Args: | |
| s1_ids (torch.Tensor): Input tensor of s1 token IDs. Shape: [batch_size, seq_len] | |
| s2_ids (torch.Tensor): Input tensor of s2 token IDs. Shape: [batch_size, seq_len] | |
| stamp (torch.Tensor, optional): Temporal stamp tensor. Shape: [batch_size, seq_len]. Defaults to None. | |
| padding_mask (torch.Tensor, optional): Mask for padding tokens. Shape: [batch_size, seq_len]. Defaults to None. | |
| Returns: | |
| Tuple[torch.Tensor, torch.Tensor]: | |
| - s1 logits: Logits for s1 token predictions. Shape: [batch_size, seq_len, s1_vocab_size] | |
| - context: Context representation from the Transformer. Shape: [batch_size, seq_len, d_model] | |
| """ | |
| x = self.embedding([s1_ids, s2_ids]) | |
| if stamp is not None: | |
| time_embedding = self.time_emb(stamp) | |
| x = x + time_embedding | |
| x = self.token_drop(x) | |
| for layer in self.transformer: | |
| x = layer(x, key_padding_mask=padding_mask) | |
| x = self.norm(x) | |
| s1_logits = self.head(x) | |
| return s1_logits, x | |
| def decode_s2(self, context, s1_ids, padding_mask=None): | |
| """ | |
| Decodes the s2 tokens, conditioned on the context and s1 tokens. | |
| This method decodes s2 tokens based on a pre-computed context representation (typically from `decode_s1`) | |
| and the s1 token IDs. It uses the dependency-aware layer and the conditional s2 head to predict s2 tokens. | |
| Args: | |
| context (torch.Tensor): Context representation from the transformer (output of decode_s1). | |
| Shape: [batch_size, seq_len, d_model] | |
| s1_ids (torch.torch.Tensor): Input tensor of s1 token IDs. Shape: [batch_size, seq_len] | |
| padding_mask (torch.Tensor, optional): Mask for padding tokens. Shape: [batch_size, seq_len]. Defaults to None. | |
| Returns: | |
| torch.Tensor: s2 logits. Shape: [batch_size, seq_len, s2_vocab_size] | |
| """ | |
| sibling_embed = self.embedding.emb_s1(s1_ids) | |
| x2 = self.dep_layer(context, sibling_embed, key_padding_mask=padding_mask) | |
| return self.head.cond_forward(x2) | |
| def top_k_top_p_filtering( | |
| logits, | |
| top_k: int = 0, | |
| top_p: float = 1.0, | |
| filter_value: float = -float("Inf"), | |
| min_tokens_to_keep: int = 1, | |
| ): | |
| """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
| Args: | |
| logits: logits distribution shape (batch size, vocabulary size) | |
| if top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
| if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
| Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
| Make sure we keep at least min_tokens_to_keep per batch example in the output | |
| From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 | |
| """ | |
| if top_k > 0: | |
| top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check | |
| # Remove all tokens with a probability less than the last token of the top-k | |
| indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
| logits[indices_to_remove] = filter_value | |
| return logits | |
| if top_p < 1.0: | |
| sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
| cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
| # Remove tokens with cumulative probability above the threshold (token with 0 are kept) | |
| sorted_indices_to_remove = cumulative_probs > top_p | |
| if min_tokens_to_keep > 1: | |
| # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) | |
| sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 | |
| # Shift the indices to the right to keep also the first token above the threshold | |
| sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
| sorted_indices_to_remove[..., 0] = 0 | |
| # scatter sorted tensors to original indexing | |
| indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) | |
| logits[indices_to_remove] = filter_value | |
| return logits | |
| def sample_from_logits(logits, temperature=1.0, top_k=None, top_p=None, sample_logits=True): | |
| logits = logits / temperature | |
| if top_k is not None or top_p is not None: | |
| if top_k > 0 or top_p < 1.0: | |
| logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) | |
| probs = F.softmax(logits, dim=-1) | |
| if not sample_logits: | |
| _, x = top_k(probs, k=1, dim=-1) | |
| else: | |
| x = torch.multinomial(probs, num_samples=1) | |
| return x | |
| def auto_regressive_inference(tokenizer, model, x, x_stamp, y_stamp, max_context, pred_len, clip=5, T=1.0, top_k=0, top_p=0.99, sample_count=5, verbose=False): | |
| with torch.no_grad(): | |
| batch_size = x.size(0) | |
| initial_seq_len = x.size(1) | |
| x = torch.clip(x, -clip, clip) | |
| device = x.device | |
| x = x.unsqueeze(1).repeat(1, sample_count, 1, 1).reshape(-1, x.size(1), x.size(2)).to(device) | |
| x_stamp = x_stamp.unsqueeze(1).repeat(1, sample_count, 1, 1).reshape(-1, x_stamp.size(1), x_stamp.size(2)).to(device) | |
| y_stamp = y_stamp.unsqueeze(1).repeat(1, sample_count, 1, 1).reshape(-1, y_stamp.size(1), y_stamp.size(2)).to(device) | |
| x_token = tokenizer.encode(x, half=True) | |
| def get_dynamic_stamp(x_stamp, y_stamp, current_seq_len, pred_step): | |
| if current_seq_len <= max_context - pred_step: | |
| return torch.cat([x_stamp, y_stamp[:, :pred_step, :]], dim=1) | |
| else: | |
| start_idx = max_context - pred_step | |
| return torch.cat([x_stamp[:, -start_idx:, :], y_stamp[:, :pred_step, :]], dim=1) | |
| if verbose: | |
| ran = trange | |
| else: | |
| ran = range | |
| for i in ran(pred_len): | |
| current_seq_len = initial_seq_len + i | |
| if current_seq_len <= max_context: | |
| input_tokens = x_token | |
| else: | |
| input_tokens = [t[:, -max_context:].contiguous() for t in x_token] | |
| current_stamp = get_dynamic_stamp(x_stamp, y_stamp, current_seq_len, i) | |
| s1_logits, context = model.decode_s1(input_tokens[0], input_tokens[1], current_stamp) | |
| s1_logits = s1_logits[:, -1, :] | |
| sample_pre = sample_from_logits(s1_logits, temperature=T, top_k=top_k, top_p=top_p, sample_logits=True) | |
| s2_logits = model.decode_s2(context, sample_pre) | |
| s2_logits = s2_logits[:, -1, :] | |
| sample_post = sample_from_logits(s2_logits, temperature=T, top_k=top_k, top_p=top_p, sample_logits=True) | |
| x_token[0] = torch.cat([x_token[0], sample_pre], dim=1) | |
| x_token[1] = torch.cat([x_token[1], sample_post], dim=1) | |
| torch.cuda.empty_cache() | |
| input_tokens = [t[:, -max_context:].contiguous() for t in x_token] | |
| z = tokenizer.decode(input_tokens, half=True) | |
| z = z.reshape(batch_size, sample_count, z.size(1), z.size(2)) | |
| preds = z.cpu().numpy() | |
| preds = np.mean(preds, axis=1) | |
| return preds | |
| def calc_time_stamps(x_timestamp): | |
| time_df = pd.DataFrame() | |
| time_df['minute'] = x_timestamp.dt.minute | |
| time_df['hour'] = x_timestamp.dt.hour | |
| time_df['weekday'] = x_timestamp.dt.weekday | |
| time_df['day'] = x_timestamp.dt.day | |
| time_df['month'] = x_timestamp.dt.month | |
| return time_df | |
| class KronosPredictor: | |
| def __init__(self, model, tokenizer, device="cuda:0", max_context=512, clip=5): | |
| self.tokenizer = tokenizer | |
| self.model = model | |
| self.max_context = max_context | |
| self.clip = clip | |
| self.price_cols = ['open', 'high', 'low', 'close'] | |
| self.vol_col = 'volume' | |
| self.amt_vol = 'amount' | |
| self.time_cols = ['minute', 'hour', 'weekday', 'day', 'month'] | |
| self.device = device | |
| self.tokenizer = self.tokenizer.to(self.device) | |
| self.model = self.model.to(self.device) | |
| def generate(self, x, x_stamp, y_stamp, pred_len, T, top_k, top_p, sample_count, verbose): | |
| x_tensor = torch.from_numpy(np.array(x).astype(np.float32)).to(self.device) | |
| x_stamp_tensor = torch.from_numpy(np.array(x_stamp).astype(np.float32)).to(self.device) | |
| y_stamp_tensor = torch.from_numpy(np.array(y_stamp).astype(np.float32)).to(self.device) | |
| preds = auto_regressive_inference(self.tokenizer, self.model, x_tensor, x_stamp_tensor, y_stamp_tensor, self.max_context, pred_len, | |
| self.clip, T, top_k, top_p, sample_count, verbose) | |
| preds = preds[:, -pred_len:, :] | |
| return preds | |
| def predict(self, df, x_timestamp, y_timestamp, pred_len, T=1.0, top_k=0, top_p=0.9, sample_count=1, verbose=True): | |
| if not isinstance(df, pd.DataFrame): | |
| raise ValueError("Input must be a pandas DataFrame.") | |
| if not all(col in df.columns for col in self.price_cols): | |
| raise ValueError(f"Price columns {self.price_cols} not found in DataFrame.") | |
| df = df.copy() | |
| if self.vol_col not in df.columns: | |
| df[self.vol_col] = 0.0 # Fill missing volume with zeros | |
| df[self.amt_vol] = 0.0 # Fill missing amount with zeros | |
| if self.amt_vol not in df.columns and self.vol_col in df.columns: | |
| df[self.amt_vol] = df[self.vol_col] * df[self.price_cols].mean(axis=1) | |
| if df[self.price_cols + [self.vol_col, self.amt_vol]].isnull().values.any(): | |
| raise ValueError("Input DataFrame contains NaN values in price or volume columns.") | |
| x_time_df = calc_time_stamps(x_timestamp) | |
| y_time_df = calc_time_stamps(y_timestamp) | |
| x = df[self.price_cols + [self.vol_col, self.amt_vol]].values.astype(np.float32) | |
| x_stamp = x_time_df.values.astype(np.float32) | |
| y_stamp = y_time_df.values.astype(np.float32) | |
| x_mean, x_std = np.mean(x, axis=0), np.std(x, axis=0) | |
| x = (x - x_mean) / (x_std + 1e-5) | |
| x = np.clip(x, -self.clip, self.clip) | |
| x = x[np.newaxis, :] | |
| x_stamp = x_stamp[np.newaxis, :] | |
| y_stamp = y_stamp[np.newaxis, :] | |
| preds = self.generate(x, x_stamp, y_stamp, pred_len, T, top_k, top_p, sample_count, verbose) | |
| preds = preds.squeeze(0) | |
| preds = preds * (x_std + 1e-5) + x_mean | |
| pred_df = pd.DataFrame(preds, columns=self.price_cols + [self.vol_col, self.amt_vol], index=y_timestamp) | |
| return pred_df | |
| def predict_batch(self, df_list, x_timestamp_list, y_timestamp_list, pred_len, T=1.0, top_k=0, top_p=0.9, sample_count=1, verbose=True): | |
| """ | |
| Perform parallel (batch) prediction on multiple time series. All series must have the same historical length and prediction length (pred_len). | |
| Args: | |
| df_list (List[pd.DataFrame]): List of input DataFrames, each containing price columns and optional volume/amount columns. | |
| x_timestamp_list (List[pd.DatetimeIndex or Series]): List of timestamps corresponding to historical data, length should match the number of rows in each DataFrame. | |
| y_timestamp_list (List[pd.DatetimeIndex or Series]): List of future prediction timestamps, length should equal pred_len. | |
| pred_len (int): Number of prediction steps. | |
| T (float): Sampling temperature. | |
| top_k (int): Top-k filtering threshold. | |
| top_p (float): Top-p (nucleus sampling) threshold. | |
| sample_count (int): Number of parallel samples per series, automatically averaged internally. | |
| verbose (bool): Whether to display autoregressive progress. | |
| Returns: | |
| List[pd.DataFrame]: List of prediction results in the same order as input, each DataFrame contains | |
| `open, high, low, close, volume, amount` columns, indexed by corresponding `y_timestamp`. | |
| """ | |
| # Basic validation | |
| if not isinstance(df_list, (list, tuple)) or not isinstance(x_timestamp_list, (list, tuple)) or not isinstance(y_timestamp_list, (list, tuple)): | |
| raise ValueError("df_list, x_timestamp_list, y_timestamp_list must be list or tuple types.") | |
| if not (len(df_list) == len(x_timestamp_list) == len(y_timestamp_list)): | |
| raise ValueError("df_list, x_timestamp_list, y_timestamp_list must have consistent lengths.") | |
| num_series = len(df_list) | |
| x_list = [] | |
| x_stamp_list = [] | |
| y_stamp_list = [] | |
| means = [] | |
| stds = [] | |
| seq_lens = [] | |
| y_lens = [] | |
| for i in range(num_series): | |
| df = df_list[i] | |
| if not isinstance(df, pd.DataFrame): | |
| raise ValueError(f"Input at index {i} is not a pandas DataFrame.") | |
| if not all(col in df.columns for col in self.price_cols): | |
| raise ValueError(f"DataFrame at index {i} is missing price columns {self.price_cols}.") | |
| df = df.copy() | |
| if self.vol_col not in df.columns: | |
| df[self.vol_col] = 0.0 | |
| df[self.amt_vol] = 0.0 | |
| if self.amt_vol not in df.columns and self.vol_col in df.columns: | |
| df[self.amt_vol] = df[self.vol_col] * df[self.price_cols].mean(axis=1) | |
| if df[self.price_cols + [self.vol_col, self.amt_vol]].isnull().values.any(): | |
| raise ValueError(f"DataFrame at index {i} contains NaN values in price or volume columns.") | |
| x_timestamp = x_timestamp_list[i] | |
| y_timestamp = y_timestamp_list[i] | |
| x_time_df = calc_time_stamps(x_timestamp) | |
| y_time_df = calc_time_stamps(y_timestamp) | |
| x = df[self.price_cols + [self.vol_col, self.amt_vol]].values.astype(np.float32) | |
| x_stamp = x_time_df.values.astype(np.float32) | |
| y_stamp = y_time_df.values.astype(np.float32) | |
| if x.shape[0] != x_stamp.shape[0]: | |
| raise ValueError(f"Inconsistent lengths at index {i}: x has {x.shape[0]} vs x_stamp has {x_stamp.shape[0]}.") | |
| if y_stamp.shape[0] != pred_len: | |
| raise ValueError(f"y_timestamp length at index {i} should equal pred_len={pred_len}, got {y_stamp.shape[0]}.") | |
| x_mean, x_std = np.mean(x, axis=0), np.std(x, axis=0) | |
| x_norm = (x - x_mean) / (x_std + 1e-5) | |
| x_norm = np.clip(x_norm, -self.clip, self.clip) | |
| x_list.append(x_norm) | |
| x_stamp_list.append(x_stamp) | |
| y_stamp_list.append(y_stamp) | |
| means.append(x_mean) | |
| stds.append(x_std) | |
| seq_lens.append(x_norm.shape[0]) | |
| y_lens.append(y_stamp.shape[0]) | |
| # Require all series to have consistent historical and prediction lengths for batch processing | |
| if len(set(seq_lens)) != 1: | |
| raise ValueError(f"Parallel prediction requires all series to have consistent historical lengths, got: {seq_lens}") | |
| if len(set(y_lens)) != 1: | |
| raise ValueError(f"Parallel prediction requires all series to have consistent prediction lengths, got: {y_lens}") | |
| x_batch = np.stack(x_list, axis=0).astype(np.float32) # (B, seq_len, feat) | |
| x_stamp_batch = np.stack(x_stamp_list, axis=0).astype(np.float32) # (B, seq_len, time_feat) | |
| y_stamp_batch = np.stack(y_stamp_list, axis=0).astype(np.float32) # (B, pred_len, time_feat) | |
| preds = self.generate(x_batch, x_stamp_batch, y_stamp_batch, pred_len, T, top_k, top_p, sample_count, verbose) | |
| # preds: (B, pred_len, feat) | |
| pred_dfs = [] | |
| for i in range(num_series): | |
| preds_i = preds[i] * (stds[i] + 1e-5) + means[i] | |
| pred_df = pd.DataFrame(preds_i, columns=self.price_cols + [self.vol_col, self.amt_vol], index=y_timestamp_list[i]) | |
| pred_dfs.append(pred_df) | |
| return pred_dfs | |