Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 2,004 Bytes
			
			b17df61 c15e9d4 2399f17 b17df61 2399f17 c15e9d4 2399f17 c15e9d4 2399f17 c15e9d4 2399f17 c15e9d4 2399f17 c15e9d4 2399f17 c15e9d4 2399f17 c15e9d4  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63  | 
								---
title: Hindi Character Classifier
emoji: 🖼️
colorFrom: red
colorTo: blue
sdk: streamlit
sdk_version: "1.25.0"
library_name: torch
pipeline_tag: image-classification
---
# Hindi Character CNN
This model is a Convolutional Neural Network (CNN) for Hindi character image classification, built with PyTorch.
## Usage
This model is designed to classify images of Hindi characters. It takes a 32x32 pixel RGB image as input and outputs the predicted Hindi character class.
**To use this model within a Hugging Face Space (Streamlit example):**
1.  **Ensure you have the following files in your space:**
    * `your_model_file.py`: Contains the `HindiCharacterCNN` class definition.
    * `your_model.safetensors`: The model's weights.
    * `app.py`: The Streamlit application script.
    * `requirements.txt`: Lists your dependencies (torch, torchvision, pillow, streamlit).
2.  **Example `app.py` (Streamlit):**
```python
import streamlit as st
import torch
from PIL import Image
import torchvision.transforms as transforms
from your_model_file import HindiCharacterCNN  # Replace with your model file
# Load model
model = HindiCharacterCNN(num_labels=36)
model.load_state_dict(torch.load("your_model.safetensors", map_location=torch.device('cpu')))
model.eval()
# Preprocessing
transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
])
st.title("Hindi Character Classification")
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
    image = Image.open(uploaded_file).convert('RGB')
    st.image(image, caption="Uploaded Image.", use_column_width=True)
    st.write("")
    st.write("Classifying...")
    image = transform(image).unsqueeze(0)
    with torch.no_grad():
        output = model(image)
        probabilities = torch.nn.functional.softmax(output[0], dim=0)
        _, predicted_class = torch.max(probabilities, 0)
        st.write(f"Predicted Class: {int(predicted_class)}") |