zamal's picture
Update app.py
ca125f5 verified
import os
import io
import base64
import gc
from huggingface_hub.utils import HfHubHTTPError
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
import io, base64
from PIL import Image
import torch
import gradio as gr
import spaces
import numpy as np
import pandas as pd
import pymupdf
from PIL import Image
from pypdf import PdfReader
from dotenv import load_dotenv
import shutil
from chromadb.config import Settings, DEFAULT_TENANT, DEFAULT_DATABASE
from welcome_text import WELCOME_INTRO
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import chromadb
from chromadb.utils import embedding_functions
from chromadb.utils.data_loaders import ImageLoader
from langchain_core.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEndpoint
from utils import extract_pdfs, extract_images, clean_text, image_to_bytes
from utils import *
# ─────────────────────────────────────────────────────────────────────────────
# Load .env
load_dotenv()
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
processor = None
vision_model = None
# OCR + multimodal image description setup
ocr_model = ocr_predictor(
"db_resnet50", "crnn_mobilenet_v3_large", pretrained=True, assume_straight_pages=True
)
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
).to("cuda")
# Add at the top of your module, alongside your other globals
PERSIST_DIR = "./chroma_db"
if os.path.exists(PERSIST_DIR):
shutil.rmtree(PERSIST_DIR)
@spaces.GPU()
def get_image_description(image: Image.Image) -> str:
"""
Lazy-loads the Llava processor + model inside the GPU worker,
runs captioning, and returns a one-sentence description.
"""
global processor, vision_model
# On first call, instantiate + move to CUDA
if processor is None or vision_model is None:
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
).to("cuda")
torch.cuda.empty_cache()
gc.collect()
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
output = vision_model.generate(**inputs, max_new_tokens=100)
return processor.decode(output[0], skip_special_tokens=True)
# Vector DB setup
# at top of file, alongside your other imports
from chromadb.utils import embedding_functions
from chromadb.utils.data_loaders import ImageLoader
import chromadb
from langchain.text_splitter import RecursiveCharacterTextSplitter
from utils import image_to_bytes # your helper
# 1) Create one shared embedding function (defaulting to All-MiniLM-L6-v2, 384-dim)
SHARED_EMB_FN = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="all-MiniLM-L6-v2"
)
def get_vectordb(text: str, images: list[Image.Image], img_names: list[str]):
"""
Build a *persistent* ChromaDB instance on disk, with two collections:
• text_db (chunks of the PDF text)
• image_db (image descriptions + raw image bytes)
"""
# 1) Make or clean the on-disk folder
shutil.rmtree(PERSIST_DIR, ignore_errors=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
client = chromadb.PersistentClient(
path=PERSIST_DIR,
settings=Settings(),
tenant=DEFAULT_TENANT,
database=DEFAULT_DATABASE
)
# 3) Create / wipe collections
for col in ("text_db", "image_db"):
if col in [c.name for c in client.list_collections()]:
client.delete_collection(col)
text_col = client.get_or_create_collection(
name="text_db",
embedding_function=SHARED_EMB_FN
)
img_col = client.get_or_create_collection(
name="image_db",
embedding_function=SHARED_EMB_FN,
metadata={"hnsw:space": "cosine"}
)
# 4) Add images
if images:
descs, metas = [], []
for idx, img in enumerate(images):
try:
cap = get_image_description(img)
except:
cap = "⚠️ could not describe image"
descs.append(f"{img_names[idx]}: {cap}")
metas.append({"image": image_to_bytes(img)})
img_col.add(ids=[str(i) for i in range(len(images))],
documents=descs,
metadatas=metas)
# 5) Chunk & add text
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
docs = splitter.create_documents([text])
text_col.add(ids=[str(i) for i in range(len(docs))],
documents=[d.page_content for d in docs])
return client
# Text extraction
def result_to_text(result, as_text=False):
pages = []
for pg in result.pages:
txt = " ".join(w.value for block in pg.blocks for line in block.lines for w in line.words)
pages.append(clean_text(txt))
return "\n\n".join(pages) if as_text else pages
OCR_CHOICES = {
"db_resnet50 + crnn_mobilenet_v3_large": ("db_resnet50", "crnn_mobilenet_v3_large"),
"db_resnet50 + crnn_resnet31": ("db_resnet50", "crnn_resnet31"),
}
@spaces.GPU()
def extract_data_from_pdfs(
docs: list[str],
session: dict,
include_images: str,
do_ocr: str,
ocr_choice: str,
vlm_choice: str,
progress=gr.Progress()
):
if not docs:
raise gr.Error("No documents to process")
# 1) OCR pipeline if requested
if do_ocr == "Get Text With OCR":
db_m, crnn_m = OCR_CHOICES[ocr_choice]
local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
else:
local_ocr = None
# 2) Vision–language model
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
vis = (LlavaNextForConditionalGeneration
.from_pretrained(vlm_choice, torch_dtype=torch.float16, low_cpu_mem_usage=True)
.to("cuda"))
# 3) Monkey-patch caption fn
def describe(img):
torch.cuda.empty_cache(); gc.collect()
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
inp = proc(prompt, img, return_tensors="pt").to("cuda")
out = vis.generate(**inp, max_new_tokens=100)
return proc.decode(out[0], skip_special_tokens=True)
global get_image_description
get_image_description = describe
# 4) Extract text & images
progress(0.2, "Extracting text and images…")
all_text = ""
images, names = [], []
for path in docs:
if local_ocr:
pdf = DocumentFile.from_pdf(path)
res = local_ocr(pdf)
all_text += result_to_text(res, as_text=True) + "\n\n"
else:
all_text += (PdfReader(path).pages[0].extract_text() or "") + "\n\n"
if include_images == "Include Images":
imgs = extract_images([path])
images.extend(imgs)
names.extend([os.path.basename(path)] * len(imgs))
# 5) Build + persist the vectordb
progress(0.6, "Indexing in vector DB…")
client = get_vectordb(all_text, images, names)
# 6) Mark session and return UI outputs
session["processed"] = True
session["persist_directory"] = PERSIST_DIR
sample_imgs = images[:4] if include_images == "Include Images" else []
return (
session, # gr.State
all_text[:2000] + "...",
sample_imgs,
"<h3>Done!</h3>"
)
# Chat function
def conversation(
session: dict,
question: str,
num_ctx: int,
img_ctx: int,
history: list,
temp: float,
max_tok: int,
model_id: str
):
pd = session.get("persist_directory")
if not session.get("processed") or not pd:
raise gr.Error("Please extract data first")
# 1) Reopen the same persistent client (new API)
client = chromadb.PersistentClient(
path=pd,
settings=Settings(),
tenant=DEFAULT_TENANT,
database=DEFAULT_DATABASE
)
# 2) Text retrieval
text_col = client.get_collection("text_db")
docs = text_col.query(query_texts=[question],
n_results=int(num_ctx),
include=["documents"])["documents"][0]
# 3) Image retrieval
img_col = client.get_collection("image_db")
img_q = img_col.query(query_texts=[question],
n_results=int(img_ctx),
include=["metadatas","documents"])
img_descs = img_q["documents"][0] or ["No images found"]
images = []
for meta in img_q["metadatas"][0]:
b64 = meta.get("image","")
try:
images.append(Image.open(io.BytesIO(base64.b64decode(b64))))
except:
pass
img_desc = "\n".join(img_descs)
# 4) Build prompt & call LLM
llm = HuggingFaceEndpoint(
repo_id=model_id,
task="text-generation",
temperature=temp,
max_new_tokens=max_tok,
huggingfacehub_api_token=HF_TOKEN
)
prompt = PromptTemplate(
template="""
Context:
{text}
Included Images:
{img_desc}
Question:
{q}
Answer:
""", input_variables=["text","img_desc","q"]
)
inp = prompt.format(text="\n\n".join(docs), img_desc=img_desc, q=question)
try:
answer = llm.invoke(inp)
except HfHubHTTPError as e:
answer = "❌ Model not hosted" if e.response.status_code==404 else f"⚠️ HF error: {e}"
except Exception as e:
answer = f"⚠️ Unexpected error: {e}"
new_history = history + [
{"role":"user", "content":question},
{"role":"assistant","content":answer}
]
return new_history, docs, images
# ─────────────────────────────────────────────────────────────────────────────
# Gradio UI
CSS = """
footer {visibility:hidden;}
"""
MODEL_OPTIONS = [
"HuggingFaceH4/zephyr-7b-beta",
"mistralai/Mistral-7B-Instruct-v0.2",
"openchat/openchat-3.5-0106",
"google/gemma-7b-it",
"deepseek-ai/deepseek-llm-7b-chat",
"microsoft/Phi-3-mini-4k-instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"Qwen/Qwen1.5-7B-Chat",
"tiiuae/falcon-7b-instruct", # Falcon 7B Instruct
"bigscience/bloomz-7b1", # BLOOMZ 7B
"facebook/opt-2.7b",
]
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
session_state = gr.State({})
with gr.Column(visible=True) as welcome_col:
gr.Markdown(f"<div style='text-align:center'>{WELCOME_INTRO}</div>")
start_btn = gr.Button("🚀 Start")
with gr.Column(visible=False) as app_col:
gr.Markdown("## 📚 Multimodal Chat-PDF Playground")
extract_event = None
with gr.Tabs() as tabs:
with gr.TabItem("1. Upload & Extract"):
docs = gr.File(file_count="multiple", file_types=[".pdf"], label="Upload PDFs")
include_dd = gr.Radio(["Include Images","Exclude Images"],"Exclude Images","Images")
ocr_radio = gr.Radio(["Get Text With OCR","Get Available Text Only"],"Get Available Text Only","OCR")
ocr_dd = gr.Dropdown(list(OCR_CHOICES.keys()), list(OCR_CHOICES.keys())[0], "OCR Model")
vlm_dd = gr.Dropdown(["llava-hf/llava-v1.6-mistral-7b-hf","llava-hf/llava-v1.5-mistral-7b"], "llava-hf/llava-v1.6-mistral-7b-hf", "Vision-Language Model")
extract_btn = gr.Button("Extract")
preview_text = gr.Textbox(lines=10, label="Sample Text", interactive=False)
preview_img = gr.Gallery(label="Sample Images", rows=2, value=[])
preview_html = gr.HTML()
extract_event = extract_btn.click(
fn=extract_data_from_pdfs,
inputs=[docs, session_state, include_dd, ocr_radio, ocr_dd, vlm_dd],
outputs=[session_state, preview_text, preview_img, preview_html]
)
with gr.TabItem("2. Chat", visible=False) as chat_tab:
with gr.Row():
with gr.Column(scale=3):
chat = gr.Chatbot(type="messages", label="Chat")
msg = gr.Textbox(placeholder="Ask about your PDF...", label="Your question")
send = gr.Button("Send")
with gr.Column(scale=1):
model_dd = gr.Dropdown(MODEL_OPTIONS, MODEL_OPTIONS[0], "Choose Chat Model")
num_ctx = gr.Slider(1,20, value=3, label="Text Contexts")
img_ctx = gr.Slider(1,10, value=2, label="Image Contexts")
temp = gr.Slider(0.1,1.0, step=0.1, value=0.4, label="Temperature")
max_tok = gr.Slider(10,1000, step=10, value=200, label="Max Tokens")
send.click(
fn=conversation,
inputs=[session_state, msg, num_ctx, img_ctx, chat, temp, max_tok, model_dd],
outputs=[chat, gr.Dataframe(), gr.Gallery(label="Relevant Images", rows=2, value=[])]
)
# Unhide the Chat tab once extraction completes
extract_event.then(
fn=lambda: gr.update(visible=True),
inputs=[],
outputs=[chat_tab]
)
gr.HTML("<center>Made with ❤️ by Zamal</center>")
start_btn.click(
fn=lambda: (gr.update(visible=False), gr.update(visible=True)),
outputs=[welcome_col, app_col]
)
if __name__ == "__main__":
demo.launch()