Spaces:
Runtime error
Runtime error
Collections: | |
- Name: BiSeNetV2 | |
License: Apache License 2.0 | |
Metadata: | |
Training Data: | |
- Cityscapes | |
Paper: | |
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic | |
Segmentation' | |
URL: https://arxiv.org/abs/2004.02147 | |
README: configs/bisenetv2/README.md | |
Frameworks: | |
- PyTorch | |
Models: | |
- Name: bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024 | |
In Collection: BiSeNetV2 | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 73.21 | |
mIoU(ms+flip): 75.74 | |
Config: configs/bisenetv2/bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 16 | |
Architecture: | |
- BiSeNetV2 | |
- BiSeNetV2 | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 7.64 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551-bcf10f09.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551.log.json | |
Paper: | |
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic | |
Segmentation' | |
URL: https://arxiv.org/abs/2004.02147 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545 | |
Framework: PyTorch | |
- Name: bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024 | |
In Collection: BiSeNetV2 | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 73.57 | |
mIoU(ms+flip): 75.8 | |
Config: configs/bisenetv2/bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 16 | |
Architecture: | |
- BiSeNetV2 | |
- BiSeNetV2 | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 7.64 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947-5f8103b4.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947.log.json | |
Paper: | |
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic | |
Segmentation' | |
URL: https://arxiv.org/abs/2004.02147 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545 | |
Framework: PyTorch | |
- Name: bisenetv2_fcn_4xb8-160k_cityscapes-1024x1024 | |
In Collection: BiSeNetV2 | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 75.76 | |
mIoU(ms+flip): 77.79 | |
Config: configs/bisenetv2/bisenetv2_fcn_4xb8-160k_cityscapes-1024x1024.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 32 | |
Architecture: | |
- BiSeNetV2 | |
- BiSeNetV2 | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 15.05 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032-e1a2eed6.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032.log.json | |
Paper: | |
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic | |
Segmentation' | |
URL: https://arxiv.org/abs/2004.02147 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545 | |
Framework: PyTorch | |
- Name: bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024 | |
In Collection: BiSeNetV2 | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 73.07 | |
mIoU(ms+flip): 75.13 | |
Config: configs/bisenetv2/bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 16 | |
Architecture: | |
- BiSeNetV2 | |
- BiSeNetV2 | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 5.77 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942-b979777b.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942.log.json | |
Paper: | |
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic | |
Segmentation' | |
URL: https://arxiv.org/abs/2004.02147 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545 | |
Framework: PyTorch | |