Spaces:
Runtime error
Runtime error
Collections: | |
- Name: Segmenter | |
License: Apache License 2.0 | |
Metadata: | |
Training Data: | |
- ADE20K | |
Paper: | |
Title: 'Segmenter: Transformer for Semantic Segmentation' | |
URL: https://arxiv.org/abs/2105.05633 | |
README: configs/segmenter/README.md | |
Frameworks: | |
- PyTorch | |
Models: | |
- Name: segmenter_vit-t_mask_8xb1-160k_ade20k-512x512 | |
In Collection: Segmenter | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 39.99 | |
mIoU(ms+flip): 40.83 | |
Config: configs/segmenter/segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 8 | |
Architecture: | |
- ViT-T_16 | |
- Segmenter | |
- Mask | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 1.21 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json | |
Paper: | |
Title: 'Segmenter: Transformer for Semantic Segmentation' | |
URL: https://arxiv.org/abs/2105.05633 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15 | |
Framework: PyTorch | |
- Name: segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512 | |
In Collection: Segmenter | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 45.75 | |
mIoU(ms+flip): 46.82 | |
Config: configs/segmenter/segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 8 | |
Architecture: | |
- ViT-S_16 | |
- Segmenter | |
- Linear | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 1.78 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713.log.json | |
Paper: | |
Title: 'Segmenter: Transformer for Semantic Segmentation' | |
URL: https://arxiv.org/abs/2105.05633 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15 | |
Framework: PyTorch | |
- Name: segmenter_vit-s_mask_8xb1-160k_ade20k-512x512 | |
In Collection: Segmenter | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 46.19 | |
mIoU(ms+flip): 47.85 | |
Config: configs/segmenter/segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 8 | |
Architecture: | |
- ViT-S_16 | |
- Segmenter | |
- Mask | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 2.03 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json | |
Paper: | |
Title: 'Segmenter: Transformer for Semantic Segmentation' | |
URL: https://arxiv.org/abs/2105.05633 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15 | |
Framework: PyTorch | |
- Name: segmenter_vit-b_mask_8xb1-160k_ade20k-512x512 | |
In Collection: Segmenter | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 49.6 | |
mIoU(ms+flip): 51.07 | |
Config: configs/segmenter/segmenter_vit-b_mask_8xb1-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 8 | |
Architecture: | |
- ViT-B_16 | |
- Segmenter | |
- Mask | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 4.2 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json | |
Paper: | |
Title: 'Segmenter: Transformer for Semantic Segmentation' | |
URL: https://arxiv.org/abs/2105.05633 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15 | |
Framework: PyTorch | |
- Name: segmenter_vit-l_mask_8xb1-160k_ade20k-512x512 | |
In Collection: Segmenter | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 52.16 | |
mIoU(ms+flip): 53.65 | |
Config: configs/segmenter/segmenter_vit-l_mask_8xb1-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 8 | |
Architecture: | |
- ViT-L_16 | |
- Segmenter | |
- Mask | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 16.56 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750.log.json | |
Paper: | |
Title: 'Segmenter: Transformer for Semantic Segmentation' | |
URL: https://arxiv.org/abs/2105.05633 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15 | |
Framework: PyTorch | |