HubHop
update
e1f98a4
raw
history blame
9.3 kB
# Copyright (c) OpenMMLab. All rights reserved.
import os
os.system('pip install -U openmim')
os.system('mim install mmengine')
os.system('mim install "mmcv>=2.0.0"')
from argparse import ArgumentParser
import cv2
from mmengine.model.utils import revert_sync_batchnorm
from mmseg.apis import inference_model, init_model
from mmseg.apis.inference import show_result_pyplot
import torch
import time
import gradio as gr
import plotly.express as px
import json
def main():
parser = ArgumentParser()
parser.add_argument('--config', default='configs/snnet/setr_naive_512x512_160k_b16_ade20k_deit_3_s_l_224_snnetv2.py', help='Config file')
parser.add_argument('--checkpoint', help='Checkpoint file', default='setr_naive_512x512_160k_b16_ade20k_snnetv2_deit3_s_l_lora_16_iter_160000.pth')
# parser.add_argument('--video', help='Video file or webcam id')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--palette',
default='cityscapes',
help='Color palette used for segmentation map')
parser.add_argument(
'--show', action='store_true', help='Whether to show draw result')
parser.add_argument(
'--show-wait-time', default=1, type=int, help='Wait time after imshow')
parser.add_argument(
'--output-file', default=None, type=str, help='Output video file path')
parser.add_argument(
'--output-fourcc',
default='MJPG',
type=str,
help='Fourcc of the output video')
parser.add_argument(
'--output-fps', default=30, type=int, help='FPS of the output video')
parser.add_argument(
'--output-height',
default=-1,
type=int,
help='Frame height of the output video')
parser.add_argument(
'--output-width',
default=-1,
type=int,
help='Frame width of the output video')
parser.add_argument(
'--opacity',
type=float,
default=0.5,
help='Opacity of painted segmentation map. In (0, 1] range.')
args = parser.parse_args()
# build the model from a config file and a checkpoint file
model = init_model(args.config, args.checkpoint, device=args.device)
if args.device == 'cpu':
model = revert_sync_batchnorm(model)
from mmseg.models.backbones.snnet import get_stitch_configs_bidirection
stitch_configs_info, _, _, anchor_ids, sl_ids, ls_ids, lsl_ids, sls_ids = get_stitch_configs_bidirection([12, 24])
stitch_configs_info = {i: cfg for i, cfg in enumerate(stitch_configs_info)}
with open('./model_flops/snnet_flops_setr_naive_512x512_160k_b16_ade20k_deit_3_s_l_224_snnetv2.json', 'r') as f:
flops_params = json.load(f)
with open('./results/eval_single_scale_20230507_235400.json', 'r') as f:
results = json.load(f)
config_ids = list(results.keys())
flops_res = {}
eval_res = {}
total_data = {}
for i, cfg_id in enumerate(config_ids):
flops = flops_params[cfg_id]
miou_res = results[cfg_id]['metric']['mIoU'] * 100
eval_res[int(cfg_id)] = miou_res
flops_res[int(cfg_id)] = flops / 1e9
total_data[int(cfg_id)] = [flops // 1e9, miou_res]
def visualize_stitch_pos(stitch_id):
if stitch_id == 13:
# 13 is equivalent to 0
stitch_id = 0
names = [f'ID {key}' for key in flops_res.keys()]
fig = px.scatter(x=flops_res.values(), y=eval_res.values(), hover_name=names)
fig.update_layout(
title=f"SN-Netv2 - Stitch ID - {stitch_id}",
title_x=0.5,
xaxis_title="GFLOPs",
yaxis_title="mIoU",
font=dict(
family="Courier New, monospace",
size=18,
color="RebeccaPurple"
),
legend=dict(
yanchor="bottom",
y=0.99,
xanchor="left",
x=0.01),
)
# continent, DarkSlateGrey
fig.update_traces(marker=dict(size=10,
line=dict(width=2)),
selector=dict(mode='markers'))
fig.add_scatter(x=[flops_res[stitch_id]], y=[eval_res[stitch_id]], mode='markers', marker=dict(size=15), name='Current Stitch')
return fig
def segment_video(video, stitch_id):
if stitch_id == 13:
# 13 is equivalent to 0
stitch_id = 0
model.backbone.reset_stitch_id(stitch_id)
output_video_path = './temp_video.avi'
cap = cv2.VideoCapture(video)
assert (cap.isOpened())
input_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
input_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
input_fps = cap.get(cv2.CAP_PROP_FPS)
fourcc = cv2.VideoWriter_fourcc(*args.output_fourcc)
output_fps = args.output_fps if args.output_fps > 0 else input_fps
output_height = args.output_height if args.output_height > 0 else int(
input_height)
output_width = args.output_width if args.output_width > 0 else int(
input_width)
writer = cv2.VideoWriter(output_video_path, fourcc, output_fps,
(output_width, output_height), True)
try:
while True:
start_time = time.time()
flag, frame = cap.read()
if not flag:
break
# test a single image
result = inference_model(model, frame)
# blend raw image and prediction
draw_img = show_result_pyplot(model, frame, result,
show=False,
with_labels=False,
)
if draw_img.shape[0] != output_height or draw_img.shape[
1] != output_width:
draw_img = cv2.resize(draw_img,
(output_width, output_height))
writer.write(draw_img)
finally:
if writer:
writer.release()
cap.release()
fig = visualize_stitch_pos(stitch_id)
return output_video_path, fig
def segment_image(image, stitch_id):
if stitch_id == 13:
# 13 is equivalent to 0
stitch_id = 0
model.backbone.reset_stitch_id(stitch_id)
result = inference_model(model, image)
draw_img = show_result_pyplot(model, image, result,
show=False,
with_labels=True,
)
fig = visualize_stitch_pos(stitch_id)
return draw_img, fig
with gr.Blocks() as image_demo:
with gr.Row():
with gr.Column():
image_input = gr.Image(label='Input Image')
stitch_slider = gr.Slider(minimum=0, maximum=134, step=1, label="Stitch ID")
with gr.Row():
clear_button = gr.ClearButton()
submit_button = gr.Button()
with gr.Column():
image_output = gr.Image(label='Segmentation Results')
stitch_plot = gr.Plot(label='Stitch Position')
submit_button.click(
fn=segment_image,
inputs=[image_input, stitch_slider],
outputs=[image_output, stitch_plot],
)
stitch_slider.change(
fn=visualize_stitch_pos,
inputs=[stitch_slider],
outputs=[stitch_plot],
show_progress=False
)
clear_button.click(
lambda: [None, 0, None, None],
outputs=[image_input, stitch_slider, image_output, stitch_plot],
)
gr.Examples(
[
['./demo_1.jpg', 0],
['./demo_2.jpg', 1],
['./demo_3.jpg', 93],
['./demo_4.jpg', 3],
],
inputs=[
image_input,
stitch_slider
],
outputs=[
image_input,
stitch_plot
],
)
with gr.Blocks() as demo:
with gr.Column():
gr.HTML("""
<h1 align="center" style=" display: flex; flex-direction: row; justify-content: center; font-size: 25pt; ">Stitched ViTs are Flexible Vision Backbones</h1>
<div align="center"> <img align="center" src='file/gradio_banner.png' width="70%"> </div>
<h3 align="center" >This is the semantic segmentation demo page of SN-Netv2, a flexible vision backbone that allows for 100+ runtime speed and performance trade-offs. You can also run this gradio demo on your local GPUs at <a href="https://github.com/ziplab/SN-Netv2">https://github.com/ziplab/SN-Netv2</a>, Paper link: <a href="https://arxiv.org/abs/2307.00154">https://arxiv.org/abs/2307.00154</a>.</h3>
""")
tabbed_page = gr.TabbedInterface([image_demo,], ['Image'])
demo.launch(allowed_paths=['./'])
if __name__ == '__main__':
main()