HubHop
update
412c852
raw
history blame
7.34 kB
Models:
- Name: swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 44.41
mIoU(ms+flip): 45.79
Config: configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-T
- UPerNet
Training Resources: 8x V100 GPUS
Memory (GB): 5.02
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json
Paper:
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
URL: https://arxiv.org/abs/2103.14030
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524
Framework: PyTorch
- Name: swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 47.72
mIoU(ms+flip): 49.24
Config: configs/swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-S
- UPerNet
Training Resources: 8x V100 GPUS
Memory (GB): 6.17
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json
Paper:
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
URL: https://arxiv.org/abs/2103.14030
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524
Framework: PyTorch
- Name: swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 47.99
mIoU(ms+flip): 49.57
Config: configs/swin/swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-B
- UPerNet
Training Resources: 8x V100 GPUS
Memory (GB): 7.61
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json
Paper:
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
URL: https://arxiv.org/abs/2103.14030
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524
Framework: PyTorch
- Name: swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 50.13
mIoU(ms+flip): 51.9
Config: configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-B
- UPerNet
Training Resources: 8x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json
Paper:
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
URL: https://arxiv.org/abs/2103.14030
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524
Framework: PyTorch
- Name: swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 48.35
mIoU(ms+flip): 49.65
Config: configs/swin/swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-B
- UPerNet
Training Resources: 8x V100 GPUS
Memory (GB): 8.52
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json
Paper:
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
URL: https://arxiv.org/abs/2103.14030
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524
Framework: PyTorch
- Name: swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 50.76
mIoU(ms+flip): 52.4
Config: configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-B
- UPerNet
Training Resources: 8x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json
Paper:
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
URL: https://arxiv.org/abs/2103.14030
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524
Framework: PyTorch