Spaces:
Runtime error
Runtime error
Models: | |
- Name: swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512 | |
In Collection: UPerNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 44.41 | |
mIoU(ms+flip): 45.79 | |
Config: configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- Swin-T | |
- UPerNet | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 5.02 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json | |
Paper: | |
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows' | |
URL: https://arxiv.org/abs/2103.14030 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524 | |
Framework: PyTorch | |
- Name: swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512 | |
In Collection: UPerNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 47.72 | |
mIoU(ms+flip): 49.24 | |
Config: configs/swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- Swin-S | |
- UPerNet | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 6.17 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json | |
Paper: | |
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows' | |
URL: https://arxiv.org/abs/2103.14030 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524 | |
Framework: PyTorch | |
- Name: swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512 | |
In Collection: UPerNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 47.99 | |
mIoU(ms+flip): 49.57 | |
Config: configs/swin/swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- Swin-B | |
- UPerNet | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 7.61 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json | |
Paper: | |
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows' | |
URL: https://arxiv.org/abs/2103.14030 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524 | |
Framework: PyTorch | |
- Name: swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512 | |
In Collection: UPerNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 50.13 | |
mIoU(ms+flip): 51.9 | |
Config: configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- Swin-B | |
- UPerNet | |
Training Resources: 8x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json | |
Paper: | |
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows' | |
URL: https://arxiv.org/abs/2103.14030 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524 | |
Framework: PyTorch | |
- Name: swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512 | |
In Collection: UPerNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 48.35 | |
mIoU(ms+flip): 49.65 | |
Config: configs/swin/swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- Swin-B | |
- UPerNet | |
Training Resources: 8x V100 GPUS | |
Memory (GB): 8.52 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json | |
Paper: | |
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows' | |
URL: https://arxiv.org/abs/2103.14030 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524 | |
Framework: PyTorch | |
- Name: swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512 | |
In Collection: UPerNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 50.76 | |
mIoU(ms+flip): 52.4 | |
Config: configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- Swin-B | |
- UPerNet | |
Training Resources: 8x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json | |
Paper: | |
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows' | |
URL: https://arxiv.org/abs/2103.14030 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524 | |
Framework: PyTorch | |