HubHop
update
412c852
raw
history blame
16 kB
# Copyright (c) OpenMMLab. All rights reserved.
import logging
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.logging import print_log
from mmengine.structures import PixelData
from torch import Tensor
from mmseg.registry import MODELS
from mmseg.structures import SegDataSample
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
OptSampleList, SampleList, add_prefix)
from ..utils import resize
from .encoder_decoder import EncoderDecoder
@MODELS.register_module()
class DepthEstimator(EncoderDecoder):
"""Encoder Decoder depth estimator.
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
Note that auxiliary_head is only used for deep supervision during training,
which could be dumped during inference.
1. The ``loss`` method is used to calculate the loss of model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2) Call the decode head loss function to forward decode head model and
calculate losses.
.. code:: text
loss(): extract_feat() -> _decode_head_forward_train() -> _auxiliary_head_forward_train (optional)
_decode_head_forward_train(): decode_head.loss()
_auxiliary_head_forward_train(): auxiliary_head.loss (optional)
2. The ``predict`` method is used to predict depth estimation results,
which includes two steps: (1) Run inference function to obtain the list of
depth (2) Call post-processing function to obtain list of
``SegDataSample`` including ``pred_depth_map``.
.. code:: text
predict(): inference() -> postprocess_result()
inference(): whole_inference()/slide_inference()
whole_inference()/slide_inference(): encoder_decoder()
encoder_decoder(): extract_feat() -> decode_head.predict()
3. The ``_forward`` method is used to output the tensor by running the model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2)Call the decode head forward function to forward decode head model.
.. code:: text
_forward(): extract_feat() -> _decode_head.forward()
Args:
backbone (ConfigType): The config for the backnone of depth estimator.
decode_head (ConfigType): The config for the decode head of depth estimator.
neck (OptConfigType): The config for the neck of depth estimator.
Defaults to None.
auxiliary_head (OptConfigType): The config for the auxiliary head of
depth estimator. Defaults to None.
train_cfg (OptConfigType): The config for training. Defaults to None.
test_cfg (OptConfigType): The config for testing. Defaults to None.
data_preprocessor (dict, optional): The pre-process config of
:class:`BaseDataPreprocessor`.
pretrained (str, optional): The path for pretrained model.
Defaults to None.
init_cfg (dict, optional): The weight initialized config for
:class:`BaseModule`.
""" # noqa: E501
def __init__(self,
backbone: ConfigType,
decode_head: ConfigType,
neck: OptConfigType = None,
auxiliary_head: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
pretrained: Optional[str] = None,
init_cfg: OptMultiConfig = None):
super().__init__(
backbone=backbone,
decode_head=decode_head,
neck=neck,
auxiliary_head=auxiliary_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
data_preprocessor=data_preprocessor,
pretrained=pretrained,
init_cfg=init_cfg)
def extract_feat(self,
inputs: Tensor,
batch_img_metas: Optional[List[dict]] = None) -> Tensor:
"""Extract features from images."""
if getattr(self.backbone, 'class_embed_select', False) and \
isinstance(batch_img_metas, list) and \
'category_id' in batch_img_metas[0]:
cat_ids = [meta['category_id'] for meta in batch_img_metas]
cat_ids = torch.tensor(cat_ids).to(inputs.device)
inputs = (inputs, cat_ids)
x = self.backbone(inputs)
if self.with_neck:
x = self.neck(x)
return x
def encode_decode(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Encode images with backbone and decode into a depth map of the same
size as input."""
x = self.extract_feat(inputs, batch_img_metas)
depth = self.decode_head.predict(x, batch_img_metas, self.test_cfg)
return depth
def _decode_head_forward_train(self, inputs: List[Tensor],
data_samples: SampleList) -> dict:
"""Run forward function and calculate loss for decode head in
training."""
losses = dict()
loss_decode = self.decode_head.loss(inputs, data_samples,
self.train_cfg)
losses.update(add_prefix(loss_decode, 'decode'))
return losses
def _auxiliary_head_forward_train(self, inputs: List[Tensor],
data_samples: SampleList) -> dict:
"""Run forward function and calculate loss for auxiliary head in
training."""
losses = dict()
if isinstance(self.auxiliary_head, nn.ModuleList):
for idx, aux_head in enumerate(self.auxiliary_head):
loss_aux = aux_head.loss(inputs, data_samples, self.train_cfg)
losses.update(add_prefix(loss_aux, f'aux_{idx}'))
else:
loss_aux = self.auxiliary_head.loss(inputs, data_samples,
self.train_cfg)
losses.update(add_prefix(loss_aux, 'aux'))
return losses
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (Tensor): Input images.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_depth_map`.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
if data_samples is not None:
batch_img_metas = [
data_sample.metainfo for data_sample in data_samples
]
else:
batch_img_metas = [
dict(
ori_shape=inputs.shape[2:],
img_shape=inputs.shape[2:],
pad_shape=inputs.shape[2:],
padding_size=[0, 0, 0, 0])
] * inputs.shape[0]
x = self.extract_feat(inputs, batch_img_metas)
losses = dict()
loss_decode = self._decode_head_forward_train(x, data_samples)
losses.update(loss_decode)
if self.with_auxiliary_head:
loss_aux = self._auxiliary_head_forward_train(x, data_samples)
losses.update(loss_aux)
return losses
def predict(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`], optional): The seg data
samples. It usually includes information such as `metainfo`
and `gt_depth_map`.
Returns:
list[:obj:`SegDataSample`]: Depth estimation results of the
input images. Each SegDataSample usually contain:
- ``pred_depth_max``(PixelData): Prediction of depth estimation.
"""
if data_samples is not None:
batch_img_metas = [
data_sample.metainfo for data_sample in data_samples
]
else:
batch_img_metas = [
dict(
ori_shape=inputs.shape[2:],
img_shape=inputs.shape[2:],
pad_shape=inputs.shape[2:],
padding_size=[0, 0, 0, 0])
] * inputs.shape[0]
depth = self.inference(inputs, batch_img_metas)
return self.postprocess_result(depth, data_samples)
def _forward(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> Tensor:
"""Network forward process.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`]): The seg
data samples. It usually includes information such
as `metainfo` and `gt_depth_map`.
Returns:
Tensor: Forward output of model without any post-processes.
"""
x = self.extract_feat(inputs)
return self.decode_head.forward(x)
def slide_flip_inference(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Inference by sliding-window with overlap and flip.
If h_crop > h_img or w_crop > w_img, the small patch will be used to
decode without padding.
Args:
inputs (tensor): the tensor should have a shape NxCxHxW,
which contains all images in the batch.
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', and 'pad_shape'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The depth estimation results.
"""
h_stride, w_stride = self.test_cfg.stride
h_crop, w_crop = self.test_cfg.crop_size
batch_size, _, h_img, w_img = inputs.size()
out_channels = self.out_channels
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
preds = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img))
for h_idx in range(h_grids):
for w_idx in range(w_grids):
y1 = h_idx * h_stride
x1 = w_idx * w_stride
y2 = min(y1 + h_crop, h_img)
x2 = min(x1 + w_crop, w_img)
y1 = max(y2 - h_crop, 0)
x1 = max(x2 - w_crop, 0)
crop_img = inputs[:, :, y1:y2, x1:x2]
# change the image shape to patch shape
batch_img_metas[0]['img_shape'] = crop_img.shape[2:]
# the output of encode_decode is depth tensor map
# with shape [N, C, H, W]
crop_depth_map = self.encode_decode(crop_img, batch_img_metas)
# average out the original and flipped prediction
crop_depth_map_flip = self.encode_decode(
crop_img.flip(dims=(3, )), batch_img_metas)
crop_depth_map_flip = crop_depth_map_flip.flip(dims=(3, ))
crop_depth_map = (crop_depth_map + crop_depth_map_flip) / 2.0
preds += F.pad(crop_depth_map,
(int(x1), int(preds.shape[3] - x2), int(y1),
int(preds.shape[2] - y2)))
count_mat[:, :, y1:y2, x1:x2] += 1
assert (count_mat == 0).sum() == 0
depth = preds / count_mat
return depth
def inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor:
"""Inference with slide/whole style.
Args:
inputs (Tensor): The input image of shape (N, 3, H, W).
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', 'pad_shape', and 'padding_size'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The depth estimation results.
"""
assert self.test_cfg.get('mode', 'whole') in ['slide', 'whole',
'slide_flip'], \
f'Only "slide", "slide_flip" or "whole" test mode are ' \
f'supported, but got {self.test_cfg["mode"]}.'
ori_shape = batch_img_metas[0]['ori_shape']
if not all(_['ori_shape'] == ori_shape for _ in batch_img_metas):
print_log(
'Image shapes are different in the batch.',
logger='current',
level=logging.WARN)
if self.test_cfg.mode == 'slide':
depth_map = self.slide_inference(inputs, batch_img_metas)
if self.test_cfg.mode == 'slide_flip':
depth_map = self.slide_flip_inference(inputs, batch_img_metas)
else:
depth_map = self.whole_inference(inputs, batch_img_metas)
return depth_map
def postprocess_result(self,
depth: Tensor,
data_samples: OptSampleList = None) -> SampleList:
""" Convert results list to `SegDataSample`.
Args:
depth (Tensor): The depth estimation results.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_depth_map`. Default to None.
Returns:
list[:obj:`SegDataSample`]: Depth estomation results of the
input images. Each SegDataSample usually contain:
- ``pred_depth_map``(PixelData): Prediction of depth estimation.
"""
batch_size, C, H, W = depth.shape
if data_samples is None:
data_samples = [SegDataSample() for _ in range(batch_size)]
only_prediction = True
else:
only_prediction = False
for i in range(batch_size):
if not only_prediction:
img_meta = data_samples[i].metainfo
# remove padding area
if 'img_padding_size' not in img_meta:
padding_size = img_meta.get('padding_size', [0] * 4)
else:
padding_size = img_meta['img_padding_size']
padding_left, padding_right, padding_top, padding_bottom =\
padding_size
# i_depth shape is 1, C, H, W after remove padding
i_depth = depth[i:i + 1, :, padding_top:H - padding_bottom,
padding_left:W - padding_right]
flip = img_meta.get('flip', None)
if flip:
flip_direction = img_meta.get('flip_direction', None)
assert flip_direction in ['horizontal', 'vertical']
if flip_direction == 'horizontal':
i_depth = i_depth.flip(dims=(3, ))
else:
i_depth = i_depth.flip(dims=(2, ))
# resize as original shape
i_depth = resize(
i_depth,
size=img_meta['ori_shape'],
mode='bilinear',
align_corners=self.align_corners,
warning=False).squeeze(0)
else:
i_depth = depth[i]
data_samples[i].set_data(
{'pred_depth_map': PixelData(**{'data': i_depth})})
return data_samples