zklee98 commited on
Commit
e459e84
·
verified ·
1 Parent(s): f1a90ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -3
app.py CHANGED
@@ -125,8 +125,7 @@ def predict(classification_mode, image):
125
 
126
  description = """
127
  <center><img src="https://huggingface.co/spaces/zklee98/SolarPanelAnomaly/resolve/main/images/dronePV_picture.jpg" width=270px> </center><br>
128
- <center>This program identifies the type of anomaly found in solar panel using an image classification model and </center>
129
- <center> the percentage of the affected area using an image segmentation model.</center><br><br><br>
130
  <center> Step 1: Choose classification mode > Step 2: Upload your image > Step 3: Click Submit </center><br>
131
  <center><i><b>(Models are trained on <a href="https://ai4earthscience.github.io/iclr-2020-workshop/papers/ai4earth22.pdf">InfraredSolarModules</a> dataset, and hence expect infrared image as input)</b></i></center>
132
  """
@@ -141,6 +140,6 @@ gr.Interface(fn=predict,
141
  title='Solar Panel Anomaly Detector',
142
  description=description,
143
  examples=[['Binary Classification', '4849.jpg'], ['Multiclass Classification', '4849.jpg'],
144
- ['Binary Classification', '7016.jpg'], ['Multiclass Classification', '8211.jpg']],
145
  cache_examples= False,
146
  article= '<center>by <a href="https://www.linkedin.com/in/lzk/">Lee Zhe Kaai</a></center>').launch()
 
125
 
126
  description = """
127
  <center><img src="https://huggingface.co/spaces/zklee98/SolarPanelAnomaly/resolve/main/images/dronePV_picture.jpg" width=270px> </center><br>
128
+ <center>This program identifies the type of anomaly found in solar panel using an image classification model and the percentage of the affected area using an image segmentation model.</center><br><br><br>
 
129
  <center> Step 1: Choose classification mode > Step 2: Upload your image > Step 3: Click Submit </center><br>
130
  <center><i><b>(Models are trained on <a href="https://ai4earthscience.github.io/iclr-2020-workshop/papers/ai4earth22.pdf">InfraredSolarModules</a> dataset, and hence expect infrared image as input)</b></i></center>
131
  """
 
140
  title='Solar Panel Anomaly Detector',
141
  description=description,
142
  examples=[['Binary Classification', '4849.jpg'], ['Multiclass Classification', '4849.jpg'],
143
+ ['Binary Classification', '7016.jpg'], ['Multiclass Classification', '/images/10000.jpg']],
144
  cache_examples= False,
145
  article= '<center>by <a href="https://www.linkedin.com/in/lzk/">Lee Zhe Kaai</a></center>').launch()