Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -124,10 +124,10 @@ def predict(classification_mode, image):
|
|
124 |
|
125 |
|
126 |
description = """
|
127 |
-
<center><img src="https://huggingface.co/spaces/zklee98/SolarPanelAnomaly/resolve/main/images/dronePV_picture.jpg" width=270px> </center>
|
128 |
-
<center>This program identifies the
|
129 |
-
<center> the
|
130 |
-
<center> Step 1: Choose classification mode > Step 2: Upload your image > Step 3: Click Submit </center>
|
131 |
<center><i><b>(Models are trained on <a href="https://ai4earthscience.github.io/iclr-2020-workshop/papers/ai4earth22.pdf">InfraredSolarModules</a> dataset, and hence expect infrared image as input)</b></i></center>
|
132 |
"""
|
133 |
|
|
|
124 |
|
125 |
|
126 |
description = """
|
127 |
+
<center><img src="https://huggingface.co/spaces/zklee98/SolarPanelAnomaly/resolve/main/images/dronePV_picture.jpg" width=270px> </center><br>
|
128 |
+
<center>This program identifies the type of anomaly found in solar panel using an image classification model and </center>
|
129 |
+
<center> the percentage of the affected area using an image segmentation model.</center><br><br><br>
|
130 |
+
<center> Step 1: Choose classification mode > Step 2: Upload your image > Step 3: Click Submit </center><br>
|
131 |
<center><i><b>(Models are trained on <a href="https://ai4earthscience.github.io/iclr-2020-workshop/papers/ai4earth22.pdf">InfraredSolarModules</a> dataset, and hence expect infrared image as input)</b></i></center>
|
132 |
"""
|
133 |
|