Upload log/log-decode-2022-04-09-01-40-41
Browse files- log/log-decode-2022-04-09-01-40-41 +1176 -0
    	
        log/log-decode-2022-04-09-01-40-41
    ADDED
    
    | @@ -0,0 +1,1176 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            2022-04-09 01:40:41,909 INFO [decode_test.py:583] Decoding started
         | 
| 2 | 
            +
            2022-04-09 01:40:41,910 INFO [decode_test.py:584] {'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'env_info': {'k2-version': '1.14', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '6833270cb228aba7bf9681fccd41e2b52f7d984c', 'k2-git-date': 'Wed Mar 16 11:16:05 2022', 'lhotse-version': '1.0.0.dev+git.d917411.clean', 'torch-cuda-available': True, 'torch-cuda-version': '11.1', 'python-version': '3.7', 'icefall-git-branch': 'gigaspeech_recipe', 'icefall-git-sha1': 'c3993a5-dirty', 'icefall-git-date': 'Mon Mar 21 13:49:39 2022', 'icefall-path': '/userhome/user/guanbo/icefall_decode', 'k2-path': '/opt/conda/lib/python3.7/site-packages/k2-1.14.dev20220408+cuda11.1.torch1.10.0-py3.7-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/userhome/user/guanbo/lhotse/lhotse/__init__.py', 'hostname': 'c8861f400b70d011ec0a3ee069db84328338-chenx8564-0', 'IP address': '10.9.150.55'}, 'epoch': 18, 'avg': 6, 'method': 'attention-decoder', 'num_paths': 1000, 'nbest_scale': 0.5, 'exp_dir': PosixPath('conformer_ctc/exp_500_8_2'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 20, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 1, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'subset': 'XL', 'lazy_load': True, 'small_dev': False}
         | 
| 3 | 
            +
            2022-04-09 01:40:42,371 INFO [lexicon.py:176] Loading pre-compiled data/lang_bpe_500/Linv.pt
         | 
| 4 | 
            +
            2022-04-09 01:40:42,473 INFO [decode_test.py:594] device: cuda:0
         | 
| 5 | 
            +
            2022-04-09 01:40:46,249 INFO [decode_test.py:656] Loading pre-compiled G_4_gram.pt
         | 
| 6 | 
            +
            2022-04-09 01:40:47,406 INFO [decode_test.py:692] averaging ['conformer_ctc/exp_500_8_2/epoch-13.pt', 'conformer_ctc/exp_500_8_2/epoch-14.pt', 'conformer_ctc/exp_500_8_2/epoch-15.pt', 'conformer_ctc/exp_500_8_2/epoch-16.pt', 'conformer_ctc/exp_500_8_2/epoch-17.pt', 'conformer_ctc/exp_500_8_2/epoch-18.pt']
         | 
| 7 | 
            +
            2022-04-09 01:40:53,065 INFO [decode_test.py:699] Number of model parameters: 109226120
         | 
| 8 | 
            +
            2022-04-09 01:40:53,065 INFO [asr_datamodule.py:381] About to get test cuts
         | 
| 9 | 
            +
            2022-04-09 01:40:56,361 INFO [decode_test.py:497] batch 0/?, cuts processed until now is 3
         | 
| 10 | 
            +
            2022-04-09 01:41:24,462 INFO [decode.py:736] Caught exception:
         | 
| 11 | 
            +
            CUDA out of memory. Tried to allocate 5.93 GiB (GPU 0; 31.75 GiB total capacity; 27.23 GiB already allocated; 1.90 GiB free; 28.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            2022-04-09 01:41:24,462 INFO [decode.py:743] num_arcs before pruning: 324363
         | 
| 14 | 
            +
            2022-04-09 01:41:24,462 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 15 | 
            +
            2022-04-09 01:41:24,473 INFO [decode.py:757] num_arcs after pruning: 7174
         | 
| 16 | 
            +
            2022-04-09 01:41:40,284 INFO [decode.py:736] Caught exception:
         | 
| 17 | 
            +
            CUDA out of memory. Tried to allocate 4.67 GiB (GPU 0; 31.75 GiB total capacity; 25.69 GiB already allocated; 2.92 GiB free; 27.47 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            2022-04-09 01:41:40,285 INFO [decode.py:743] num_arcs before pruning: 368362
         | 
| 20 | 
            +
            2022-04-09 01:41:40,285 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 21 | 
            +
            2022-04-09 01:41:40,305 INFO [decode.py:757] num_arcs after pruning: 8521
         | 
| 22 | 
            +
            2022-04-09 01:42:38,727 INFO [decode.py:736] Caught exception:
         | 
| 23 | 
            +
            CUDA out of memory. Tried to allocate 2.18 GiB (GPU 0; 31.75 GiB total capacity; 26.05 GiB already allocated; 1.42 GiB free; 28.98 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            2022-04-09 01:42:38,727 INFO [decode.py:743] num_arcs before pruning: 432616
         | 
| 26 | 
            +
            2022-04-09 01:42:38,728 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 27 | 
            +
            2022-04-09 01:42:38,736 INFO [decode.py:757] num_arcs after pruning: 9233
         | 
| 28 | 
            +
            2022-04-09 01:43:13,573 INFO [decode_test.py:497] batch 100/?, cuts processed until now is 297
         | 
| 29 | 
            +
            2022-04-09 01:43:48,362 INFO [decode.py:736] Caught exception:
         | 
| 30 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.34 GiB already allocated; 2.20 GiB free; 28.20 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            2022-04-09 01:43:48,363 INFO [decode.py:743] num_arcs before pruning: 319907
         | 
| 33 | 
            +
            2022-04-09 01:43:48,363 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 34 | 
            +
            2022-04-09 01:43:48,372 INFO [decode.py:757] num_arcs after pruning: 6358
         | 
| 35 | 
            +
            2022-04-09 01:43:59,713 INFO [decode.py:736] Caught exception:
         | 
| 36 | 
            +
            CUDA out of memory. Tried to allocate 2.74 GiB (GPU 0; 31.75 GiB total capacity; 27.51 GiB already allocated; 2.19 GiB free; 28.20 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            2022-04-09 01:43:59,713 INFO [decode.py:743] num_arcs before pruning: 313596
         | 
| 39 | 
            +
            2022-04-09 01:43:59,713 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 40 | 
            +
            2022-04-09 01:43:59,724 INFO [decode.py:757] num_arcs after pruning: 8252
         | 
| 41 | 
            +
            2022-04-09 01:44:54,463 INFO [decode.py:736] Caught exception:
         | 
| 42 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.25 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            2022-04-09 01:44:54,463 INFO [decode.py:743] num_arcs before pruning: 353355
         | 
| 45 | 
            +
            2022-04-09 01:44:54,463 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 46 | 
            +
            2022-04-09 01:44:54,485 INFO [decode.py:757] num_arcs after pruning: 7520
         | 
| 47 | 
            +
            2022-04-09 01:45:20,716 INFO [decode_test.py:497] batch 200/?, cuts processed until now is 570
         | 
| 48 | 
            +
            2022-04-09 01:47:19,457 INFO [decode_test.py:497] batch 300/?, cuts processed until now is 806
         | 
| 49 | 
            +
            2022-04-09 01:47:38,292 INFO [decode.py:736] Caught exception:
         | 
| 50 | 
            +
            CUDA out of memory. Tried to allocate 2.28 GiB (GPU 0; 31.75 GiB total capacity; 26.28 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            2022-04-09 01:47:38,293 INFO [decode.py:743] num_arcs before pruning: 596002
         | 
| 53 | 
            +
            2022-04-09 01:47:38,293 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 54 | 
            +
            2022-04-09 01:47:38,312 INFO [decode.py:757] num_arcs after pruning: 10745
         | 
| 55 | 
            +
            2022-04-09 01:49:18,493 INFO [decode.py:736] Caught exception:
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                Some bad things happened. Please read the above error messages and stack
         | 
| 58 | 
            +
                trace. If you are using Python, the following command may be helpful:
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                  gdb --args python /path/to/your/code.py
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                (You can use `gdb` to debug the code. Please consider compiling
         | 
| 63 | 
            +
                a debug version of k2.).
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                If you are unable to fix it, please open an issue at:
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                  https://github.com/k2-fsa/k2/issues/new
         | 
| 68 | 
            +
                
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            2022-04-09 01:49:18,494 INFO [decode.py:743] num_arcs before pruning: 398202
         | 
| 71 | 
            +
            2022-04-09 01:49:18,494 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 72 | 
            +
            2022-04-09 01:49:18,541 INFO [decode.py:757] num_arcs after pruning: 14003
         | 
| 73 | 
            +
            2022-04-09 01:49:21,800 INFO [decode_test.py:497] batch 400/?, cuts processed until now is 1082
         | 
| 74 | 
            +
            2022-04-09 01:50:58,700 INFO [decode.py:736] Caught exception:
         | 
| 75 | 
            +
            CUDA out of memory. Tried to allocate 4.85 GiB (GPU 0; 31.75 GiB total capacity; 25.89 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            2022-04-09 01:50:58,701 INFO [decode.py:743] num_arcs before pruning: 398349
         | 
| 78 | 
            +
            2022-04-09 01:50:58,701 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 79 | 
            +
            2022-04-09 01:50:58,709 INFO [decode.py:757] num_arcs after pruning: 10321
         | 
| 80 | 
            +
            2022-04-09 01:51:31,627 INFO [decode_test.py:497] batch 500/?, cuts processed until now is 1334
         | 
| 81 | 
            +
            2022-04-09 01:52:05,232 INFO [decode.py:736] Caught exception:
         | 
| 82 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.62 GiB already allocated; 1.47 GiB free; 28.93 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            2022-04-09 01:52:05,232 INFO [decode.py:743] num_arcs before pruning: 212665
         | 
| 85 | 
            +
            2022-04-09 01:52:05,232 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 86 | 
            +
            2022-04-09 01:52:05,241 INFO [decode.py:757] num_arcs after pruning: 6301
         | 
| 87 | 
            +
            2022-04-09 01:53:29,890 INFO [decode.py:736] Caught exception:
         | 
| 88 | 
            +
            CUDA out of memory. Tried to allocate 1.91 GiB (GPU 0; 31.75 GiB total capacity; 25.66 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            2022-04-09 01:53:29,891 INFO [decode.py:743] num_arcs before pruning: 883555
         | 
| 91 | 
            +
            2022-04-09 01:53:29,891 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 92 | 
            +
            2022-04-09 01:53:29,905 INFO [decode.py:757] num_arcs after pruning: 14819
         | 
| 93 | 
            +
            2022-04-09 01:53:38,676 INFO [decode_test.py:497] batch 600/?, cuts processed until now is 1651
         | 
| 94 | 
            +
            2022-04-09 01:54:57,438 INFO [decode.py:736] Caught exception:
         | 
| 95 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.34 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            2022-04-09 01:54:57,438 INFO [decode.py:743] num_arcs before pruning: 515795
         | 
| 98 | 
            +
            2022-04-09 01:54:57,438 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 99 | 
            +
            2022-04-09 01:54:57,447 INFO [decode.py:757] num_arcs after pruning: 10132
         | 
| 100 | 
            +
            2022-04-09 01:55:28,356 INFO [decode.py:736] Caught exception:
         | 
| 101 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.46 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            2022-04-09 01:55:28,356 INFO [decode.py:743] num_arcs before pruning: 670748
         | 
| 104 | 
            +
            2022-04-09 01:55:28,356 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 105 | 
            +
            2022-04-09 01:55:28,365 INFO [decode.py:757] num_arcs after pruning: 10497
         | 
| 106 | 
            +
            2022-04-09 01:55:42,238 INFO [decode_test.py:497] batch 700/?, cuts processed until now is 1956
         | 
| 107 | 
            +
            2022-04-09 01:57:57,456 INFO [decode_test.py:497] batch 800/?, cuts processed until now is 2238
         | 
| 108 | 
            +
            2022-04-09 01:58:04,281 INFO [decode.py:736] Caught exception:
         | 
| 109 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 3.07 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 110 | 
            +
             | 
| 111 | 
            +
            2022-04-09 01:58:04,282 INFO [decode.py:743] num_arcs before pruning: 175423
         | 
| 112 | 
            +
            2022-04-09 01:58:04,282 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 113 | 
            +
            2022-04-09 01:58:04,296 INFO [decode.py:757] num_arcs after pruning: 7926
         | 
| 114 | 
            +
            2022-04-09 01:59:07,916 INFO [decode.py:736] Caught exception:
         | 
| 115 | 
            +
            CUDA out of memory. Tried to allocate 4.68 GiB (GPU 0; 31.75 GiB total capacity; 24.40 GiB already allocated; 3.06 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            2022-04-09 01:59:07,917 INFO [decode.py:743] num_arcs before pruning: 259758
         | 
| 118 | 
            +
            2022-04-09 01:59:07,917 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 119 | 
            +
            2022-04-09 01:59:07,928 INFO [decode.py:757] num_arcs after pruning: 6026
         | 
| 120 | 
            +
            2022-04-09 02:00:00,623 INFO [decode_test.py:497] batch 900/?, cuts processed until now is 2536
         | 
| 121 | 
            +
            2022-04-09 02:01:22,959 INFO [decode.py:736] Caught exception:
         | 
| 122 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.44 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            2022-04-09 02:01:22,959 INFO [decode.py:743] num_arcs before pruning: 749228
         | 
| 125 | 
            +
            2022-04-09 02:01:22,959 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 126 | 
            +
            2022-04-09 02:01:22,968 INFO [decode.py:757] num_arcs after pruning: 23868
         | 
| 127 | 
            +
            2022-04-09 02:01:59,449 INFO [decode_test.py:497] batch 1000/?, cuts processed until now is 2824
         | 
| 128 | 
            +
            2022-04-09 02:03:05,494 INFO [decode.py:736] Caught exception:
         | 
| 129 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.38 GiB already allocated; 3.06 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 130 | 
            +
             | 
| 131 | 
            +
            2022-04-09 02:03:05,494 INFO [decode.py:743] num_arcs before pruning: 255135
         | 
| 132 | 
            +
            2022-04-09 02:03:05,494 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 133 | 
            +
            2022-04-09 02:03:05,504 INFO [decode.py:757] num_arcs after pruning: 5955
         | 
| 134 | 
            +
            2022-04-09 02:03:48,017 INFO [decode.py:736] Caught exception:
         | 
| 135 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.61 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            2022-04-09 02:03:48,017 INFO [decode.py:743] num_arcs before pruning: 517077
         | 
| 138 | 
            +
            2022-04-09 02:03:48,017 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 139 | 
            +
            2022-04-09 02:03:48,026 INFO [decode.py:757] num_arcs after pruning: 7695
         | 
| 140 | 
            +
            2022-04-09 02:04:09,806 INFO [decode_test.py:497] batch 1100/?, cuts processed until now is 3105
         | 
| 141 | 
            +
            2022-04-09 02:04:31,410 INFO [decode.py:736] Caught exception:
         | 
| 142 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.34 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 143 | 
            +
             | 
| 144 | 
            +
            2022-04-09 02:04:31,411 INFO [decode.py:743] num_arcs before pruning: 859561
         | 
| 145 | 
            +
            2022-04-09 02:04:31,411 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 146 | 
            +
            2022-04-09 02:04:31,422 INFO [decode.py:757] num_arcs after pruning: 13014
         | 
| 147 | 
            +
            2022-04-09 02:06:11,496 INFO [decode_test.py:497] batch 1200/?, cuts processed until now is 3401
         | 
| 148 | 
            +
            2022-04-09 02:08:10,727 INFO [decode_test.py:497] batch 1300/?, cuts processed until now is 3730
         | 
| 149 | 
            +
            2022-04-09 02:10:17,677 INFO [decode_test.py:497] batch 1400/?, cuts processed until now is 4067
         | 
| 150 | 
            +
            2022-04-09 02:12:13,175 INFO [decode_test.py:497] batch 1500/?, cuts processed until now is 4329
         | 
| 151 | 
            +
            2022-04-09 02:13:02,842 INFO [decode.py:736] Caught exception:
         | 
| 152 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.55 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 153 | 
            +
             | 
| 154 | 
            +
            2022-04-09 02:13:02,843 INFO [decode.py:743] num_arcs before pruning: 475511
         | 
| 155 | 
            +
            2022-04-09 02:13:02,843 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 156 | 
            +
            2022-04-09 02:13:02,849 INFO [decode.py:757] num_arcs after pruning: 8439
         | 
| 157 | 
            +
            2022-04-09 02:13:46,588 INFO [decode.py:736] Caught exception:
         | 
| 158 | 
            +
            CUDA out of memory. Tried to allocate 2.37 GiB (GPU 0; 31.75 GiB total capacity; 26.83 GiB already allocated; 1.45 GiB free; 28.94 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 159 | 
            +
             | 
| 160 | 
            +
            2022-04-09 02:13:46,588 INFO [decode.py:743] num_arcs before pruning: 595488
         | 
| 161 | 
            +
            2022-04-09 02:13:46,588 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 162 | 
            +
            2022-04-09 02:13:46,598 INFO [decode.py:757] num_arcs after pruning: 13475
         | 
| 163 | 
            +
            2022-04-09 02:14:21,206 INFO [decode_test.py:497] batch 1600/?, cuts processed until now is 4598
         | 
| 164 | 
            +
            2022-04-09 02:16:42,740 INFO [decode_test.py:497] batch 1700/?, cuts processed until now is 4969
         | 
| 165 | 
            +
            2022-04-09 02:17:13,672 INFO [decode.py:736] Caught exception:
         | 
| 166 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.39 GiB already allocated; 1.45 GiB free; 28.94 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 167 | 
            +
             | 
| 168 | 
            +
            2022-04-09 02:17:13,673 INFO [decode.py:743] num_arcs before pruning: 615734
         | 
| 169 | 
            +
            2022-04-09 02:17:13,673 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 170 | 
            +
            2022-04-09 02:17:13,685 INFO [decode.py:757] num_arcs after pruning: 8684
         | 
| 171 | 
            +
            2022-04-09 02:18:54,514 INFO [decode_test.py:497] batch 1800/?, cuts processed until now is 5260
         | 
| 172 | 
            +
            2022-04-09 02:18:59,938 INFO [decode.py:736] Caught exception:
         | 
| 173 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.36 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 174 | 
            +
             | 
| 175 | 
            +
            2022-04-09 02:18:59,938 INFO [decode.py:743] num_arcs before pruning: 360099
         | 
| 176 | 
            +
            2022-04-09 02:18:59,938 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 177 | 
            +
            2022-04-09 02:18:59,949 INFO [decode.py:757] num_arcs after pruning: 6898
         | 
| 178 | 
            +
            2022-04-09 02:19:48,186 INFO [decode.py:736] Caught exception:
         | 
| 179 | 
            +
            CUDA out of memory. Tried to allocate 6.00 GiB (GPU 0; 31.75 GiB total capacity; 27.15 GiB already allocated; 967.75 MiB free; 29.45 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 180 | 
            +
             | 
| 181 | 
            +
            2022-04-09 02:19:48,186 INFO [decode.py:743] num_arcs before pruning: 168720
         | 
| 182 | 
            +
            2022-04-09 02:19:48,186 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 183 | 
            +
            2022-04-09 02:19:48,201 INFO [decode.py:757] num_arcs after pruning: 5346
         | 
| 184 | 
            +
            2022-04-09 02:20:52,049 INFO [decode_test.py:497] batch 1900/?, cuts processed until now is 5585
         | 
| 185 | 
            +
            2022-04-09 02:22:12,107 INFO [decode.py:736] Caught exception:
         | 
| 186 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 973.75 MiB free; 29.44 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 187 | 
            +
             | 
| 188 | 
            +
            2022-04-09 02:22:12,107 INFO [decode.py:743] num_arcs before pruning: 1151735
         | 
| 189 | 
            +
            2022-04-09 02:22:12,107 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 190 | 
            +
            2022-04-09 02:22:12,120 INFO [decode.py:757] num_arcs after pruning: 8335
         | 
| 191 | 
            +
            2022-04-09 02:23:01,497 INFO [decode_test.py:497] batch 2000/?, cuts processed until now is 5902
         | 
| 192 | 
            +
            2022-04-09 02:25:26,356 INFO [decode_test.py:497] batch 2100/?, cuts processed until now is 6219
         | 
| 193 | 
            +
            2022-04-09 02:25:56,466 INFO [decode.py:736] Caught exception:
         | 
| 194 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.34 GiB already allocated; 973.75 MiB free; 29.44 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 195 | 
            +
             | 
| 196 | 
            +
            2022-04-09 02:25:56,467 INFO [decode.py:743] num_arcs before pruning: 612804
         | 
| 197 | 
            +
            2022-04-09 02:25:56,467 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 198 | 
            +
            2022-04-09 02:25:56,477 INFO [decode.py:757] num_arcs after pruning: 10853
         | 
| 199 | 
            +
            2022-04-09 02:27:26,441 INFO [decode_test.py:497] batch 2200/?, cuts processed until now is 6480
         | 
| 200 | 
            +
            2022-04-09 02:29:28,073 INFO [decode_test.py:497] batch 2300/?, cuts processed until now is 6768
         | 
| 201 | 
            +
            2022-04-09 02:31:41,553 INFO [decode_test.py:497] batch 2400/?, cuts processed until now is 7120
         | 
| 202 | 
            +
            2022-04-09 02:31:55,632 INFO [decode.py:736] Caught exception:
         | 
| 203 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 204 | 
            +
             | 
| 205 | 
            +
            2022-04-09 02:31:55,632 INFO [decode.py:743] num_arcs before pruning: 411490
         | 
| 206 | 
            +
            2022-04-09 02:31:55,632 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 207 | 
            +
            2022-04-09 02:31:55,638 INFO [decode.py:757] num_arcs after pruning: 8626
         | 
| 208 | 
            +
            2022-04-09 02:33:22,034 INFO [decode.py:736] Caught exception:
         | 
| 209 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 210 | 
            +
             | 
| 211 | 
            +
            2022-04-09 02:33:22,034 INFO [decode.py:743] num_arcs before pruning: 625728
         | 
| 212 | 
            +
            2022-04-09 02:33:22,035 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 213 | 
            +
            2022-04-09 02:33:22,043 INFO [decode.py:757] num_arcs after pruning: 9502
         | 
| 214 | 
            +
            2022-04-09 02:33:37,663 INFO [decode_test.py:497] batch 2500/?, cuts processed until now is 7387
         | 
| 215 | 
            +
            2022-04-09 02:34:18,300 INFO [decode.py:736] Caught exception:
         | 
| 216 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.51 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 217 | 
            +
             | 
| 218 | 
            +
            2022-04-09 02:34:18,301 INFO [decode.py:743] num_arcs before pruning: 1015956
         | 
| 219 | 
            +
            2022-04-09 02:34:18,301 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 220 | 
            +
            2022-04-09 02:34:18,314 INFO [decode.py:757] num_arcs after pruning: 14404
         | 
| 221 | 
            +
            2022-04-09 02:34:20,220 INFO [decode.py:841] Caught exception:
         | 
| 222 | 
            +
            CUDA out of memory. Tried to allocate 5.58 GiB (GPU 0; 31.75 GiB total capacity; 24.87 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 223 | 
            +
             | 
| 224 | 
            +
            2022-04-09 02:34:20,221 INFO [decode.py:843] num_paths before decreasing: 1000
         | 
| 225 | 
            +
            2022-04-09 02:34:20,221 INFO [decode.py:852] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 226 | 
            +
            2022-04-09 02:34:20,221 INFO [decode.py:858] num_paths after decreasing: 500
         | 
| 227 | 
            +
            2022-04-09 02:34:40,089 INFO [decode.py:736] Caught exception:
         | 
| 228 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.38 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 229 | 
            +
             | 
| 230 | 
            +
            2022-04-09 02:34:40,089 INFO [decode.py:743] num_arcs before pruning: 570686
         | 
| 231 | 
            +
            2022-04-09 02:34:40,089 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 232 | 
            +
            2022-04-09 02:34:40,098 INFO [decode.py:757] num_arcs after pruning: 9182
         | 
| 233 | 
            +
            2022-04-09 02:35:50,624 INFO [decode_test.py:497] batch 2600/?, cuts processed until now is 7764
         | 
| 234 | 
            +
            2022-04-09 02:36:44,519 INFO [decode.py:736] Caught exception:
         | 
| 235 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.61 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 236 | 
            +
             | 
| 237 | 
            +
            2022-04-09 02:36:44,519 INFO [decode.py:743] num_arcs before pruning: 1066267
         | 
| 238 | 
            +
            2022-04-09 02:36:44,519 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 239 | 
            +
            2022-04-09 02:36:44,530 INFO [decode.py:757] num_arcs after pruning: 6963
         | 
| 240 | 
            +
            2022-04-09 02:38:18,717 INFO [decode_test.py:497] batch 2700/?, cuts processed until now is 8078
         | 
| 241 | 
            +
            2022-04-09 02:40:07,021 INFO [decode.py:736] Caught exception:
         | 
| 242 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 243 | 
            +
             | 
| 244 | 
            +
            2022-04-09 02:40:07,022 INFO [decode.py:743] num_arcs before pruning: 1023667
         | 
| 245 | 
            +
            2022-04-09 02:40:07,022 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 246 | 
            +
            2022-04-09 02:40:07,034 INFO [decode.py:757] num_arcs after pruning: 13090
         | 
| 247 | 
            +
            2022-04-09 02:40:25,184 INFO [decode_test.py:497] batch 2800/?, cuts processed until now is 8444
         | 
| 248 | 
            +
            2022-04-09 02:41:27,080 INFO [decode.py:736] Caught exception:
         | 
| 249 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.32 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 250 | 
            +
             | 
| 251 | 
            +
            2022-04-09 02:41:27,080 INFO [decode.py:743] num_arcs before pruning: 739744
         | 
| 252 | 
            +
            2022-04-09 02:41:27,080 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 253 | 
            +
            2022-04-09 02:41:27,093 INFO [decode.py:757] num_arcs after pruning: 9791
         | 
| 254 | 
            +
            2022-04-09 02:42:44,319 INFO [decode_test.py:497] batch 2900/?, cuts processed until now is 8765
         | 
| 255 | 
            +
            2022-04-09 02:42:44,656 INFO [decode.py:736] Caught exception:
         | 
| 256 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.73 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 257 | 
            +
             | 
| 258 | 
            +
            2022-04-09 02:42:44,656 INFO [decode.py:743] num_arcs before pruning: 666168
         | 
| 259 | 
            +
            2022-04-09 02:42:44,656 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 260 | 
            +
            2022-04-09 02:42:44,665 INFO [decode.py:757] num_arcs after pruning: 17223
         | 
| 261 | 
            +
            2022-04-09 02:43:05,748 INFO [decode.py:736] Caught exception:
         | 
| 262 | 
            +
            CUDA out of memory. Tried to allocate 5.60 GiB (GPU 0; 31.75 GiB total capacity; 26.18 GiB already allocated; 1.14 GiB free; 29.26 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 263 | 
            +
             | 
| 264 | 
            +
            2022-04-09 02:43:05,748 INFO [decode.py:743] num_arcs before pruning: 188729
         | 
| 265 | 
            +
            2022-04-09 02:43:05,748 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 266 | 
            +
            2022-04-09 02:43:05,762 INFO [decode.py:757] num_arcs after pruning: 8688
         | 
| 267 | 
            +
            2022-04-09 02:44:54,469 INFO [decode_test.py:497] batch 3000/?, cuts processed until now is 9050
         | 
| 268 | 
            +
            2022-04-09 02:46:55,167 INFO [decode_test.py:497] batch 3100/?, cuts processed until now is 9296
         | 
| 269 | 
            +
            2022-04-09 02:47:28,418 INFO [decode.py:736] Caught exception:
         | 
| 270 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 20.00 GiB already allocated; 3.07 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 271 | 
            +
             | 
| 272 | 
            +
            2022-04-09 02:47:28,419 INFO [decode.py:743] num_arcs before pruning: 160153
         | 
| 273 | 
            +
            2022-04-09 02:47:28,419 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 274 | 
            +
            2022-04-09 02:47:28,448 INFO [decode.py:757] num_arcs after pruning: 7778
         | 
| 275 | 
            +
            2022-04-09 02:49:21,448 INFO [decode_test.py:497] batch 3200/?, cuts processed until now is 9652
         | 
| 276 | 
            +
            2022-04-09 02:50:17,558 INFO [decode.py:736] Caught exception:
         | 
| 277 | 
            +
            CUDA out of memory. Tried to allocate 6.13 GiB (GPU 0; 31.75 GiB total capacity; 27.60 GiB already allocated; 895.75 MiB free; 29.52 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 278 | 
            +
             | 
| 279 | 
            +
            2022-04-09 02:50:17,558 INFO [decode.py:743] num_arcs before pruning: 388116
         | 
| 280 | 
            +
            2022-04-09 02:50:17,559 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 281 | 
            +
            2022-04-09 02:50:17,565 INFO [decode.py:757] num_arcs after pruning: 10555
         | 
| 282 | 
            +
            2022-04-09 02:51:30,675 INFO [decode_test.py:497] batch 3300/?, cuts processed until now is 10071
         | 
| 283 | 
            +
            2022-04-09 02:53:49,565 INFO [decode_test.py:497] batch 3400/?, cuts processed until now is 10342
         | 
| 284 | 
            +
            2022-04-09 02:55:49,392 INFO [decode_test.py:497] batch 3500/?, cuts processed until now is 10642
         | 
| 285 | 
            +
            2022-04-09 02:58:07,518 INFO [decode_test.py:497] batch 3600/?, cuts processed until now is 10951
         | 
| 286 | 
            +
            2022-04-09 02:58:16,360 INFO [decode.py:736] Caught exception:
         | 
| 287 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.29 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 288 | 
            +
             | 
| 289 | 
            +
            2022-04-09 02:58:16,361 INFO [decode.py:743] num_arcs before pruning: 396714
         | 
| 290 | 
            +
            2022-04-09 02:58:16,361 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 291 | 
            +
            2022-04-09 02:58:16,374 INFO [decode.py:757] num_arcs after pruning: 9543
         | 
| 292 | 
            +
            2022-04-09 03:00:00,485 INFO [decode_test.py:497] batch 3700/?, cuts processed until now is 11231
         | 
| 293 | 
            +
            2022-04-09 03:00:17,600 INFO [decode.py:736] Caught exception:
         | 
| 294 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 295 | 
            +
             | 
| 296 | 
            +
            2022-04-09 03:00:17,601 INFO [decode.py:743] num_arcs before pruning: 854366
         | 
| 297 | 
            +
            2022-04-09 03:00:17,601 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 298 | 
            +
            2022-04-09 03:00:17,612 INFO [decode.py:757] num_arcs after pruning: 10487
         | 
| 299 | 
            +
            2022-04-09 03:00:20,098 INFO [decode.py:736] Caught exception:
         | 
| 300 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.68 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 301 | 
            +
             | 
| 302 | 
            +
            2022-04-09 03:00:20,098 INFO [decode.py:743] num_arcs before pruning: 442824
         | 
| 303 | 
            +
            2022-04-09 03:00:20,098 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 304 | 
            +
            2022-04-09 03:00:20,108 INFO [decode.py:757] num_arcs after pruning: 5265
         | 
| 305 | 
            +
            2022-04-09 03:02:00,114 INFO [decode_test.py:497] batch 3800/?, cuts processed until now is 11509
         | 
| 306 | 
            +
            2022-04-09 03:02:11,570 INFO [decode.py:736] Caught exception:
         | 
| 307 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.19 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 308 | 
            +
             | 
| 309 | 
            +
            2022-04-09 03:02:11,571 INFO [decode.py:743] num_arcs before pruning: 285638
         | 
| 310 | 
            +
            2022-04-09 03:02:11,571 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 311 | 
            +
            2022-04-09 03:02:11,579 INFO [decode.py:757] num_arcs after pruning: 5903
         | 
| 312 | 
            +
            2022-04-09 03:04:02,757 INFO [decode_test.py:497] batch 3900/?, cuts processed until now is 11774
         | 
| 313 | 
            +
            2022-04-09 03:05:19,989 INFO [decode.py:736] Caught exception:
         | 
| 314 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.73 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 315 | 
            +
             | 
| 316 | 
            +
            2022-04-09 03:05:19,990 INFO [decode.py:743] num_arcs before pruning: 637327
         | 
| 317 | 
            +
            2022-04-09 03:05:19,990 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 318 | 
            +
            2022-04-09 03:05:19,999 INFO [decode.py:757] num_arcs after pruning: 6357
         | 
| 319 | 
            +
            2022-04-09 03:06:01,953 INFO [decode_test.py:497] batch 4000/?, cuts processed until now is 12045
         | 
| 320 | 
            +
            2022-04-09 03:07:49,854 INFO [decode_test.py:497] batch 4100/?, cuts processed until now is 12300
         | 
| 321 | 
            +
            2022-04-09 03:09:15,137 INFO [decode.py:736] Caught exception:
         | 
| 322 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 323 | 
            +
             | 
| 324 | 
            +
            2022-04-09 03:09:15,138 INFO [decode.py:743] num_arcs before pruning: 507733
         | 
| 325 | 
            +
            2022-04-09 03:09:15,138 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 326 | 
            +
            2022-04-09 03:09:15,148 INFO [decode.py:757] num_arcs after pruning: 4196
         | 
| 327 | 
            +
            2022-04-09 03:09:47,397 INFO [decode.py:736] Caught exception:
         | 
| 328 | 
            +
            CUDA out of memory. Tried to allocate 5.86 GiB (GPU 0; 31.75 GiB total capacity; 27.78 GiB already allocated; 925.75 MiB free; 29.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 329 | 
            +
             | 
| 330 | 
            +
            2022-04-09 03:09:47,397 INFO [decode.py:743] num_arcs before pruning: 514118
         | 
| 331 | 
            +
            2022-04-09 03:09:47,397 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 332 | 
            +
            2022-04-09 03:09:47,407 INFO [decode.py:757] num_arcs after pruning: 7168
         | 
| 333 | 
            +
            2022-04-09 03:10:00,013 INFO [decode_test.py:497] batch 4200/?, cuts processed until now is 12580
         | 
| 334 | 
            +
            2022-04-09 03:10:33,411 INFO [decode.py:736] Caught exception:
         | 
| 335 | 
            +
            CUDA out of memory. Tried to allocate 2.80 GiB (GPU 0; 31.75 GiB total capacity; 27.70 GiB already allocated; 925.75 MiB free; 29.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 336 | 
            +
             | 
| 337 | 
            +
            2022-04-09 03:10:33,411 INFO [decode.py:743] num_arcs before pruning: 374935
         | 
| 338 | 
            +
            2022-04-09 03:10:33,411 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 339 | 
            +
            2022-04-09 03:10:33,418 INFO [decode.py:757] num_arcs after pruning: 10023
         | 
| 340 | 
            +
            2022-04-09 03:12:04,333 INFO [decode_test.py:497] batch 4300/?, cuts processed until now is 12807
         | 
| 341 | 
            +
            2022-04-09 03:14:06,889 INFO [decode_test.py:497] batch 4400/?, cuts processed until now is 13050
         | 
| 342 | 
            +
            2022-04-09 03:14:34,787 INFO [decode.py:736] Caught exception:
         | 
| 343 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.47 GiB already allocated; 925.75 MiB free; 29.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 344 | 
            +
             | 
| 345 | 
            +
            2022-04-09 03:14:34,788 INFO [decode.py:743] num_arcs before pruning: 767465
         | 
| 346 | 
            +
            2022-04-09 03:14:34,788 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 347 | 
            +
            2022-04-09 03:14:34,797 INFO [decode.py:757] num_arcs after pruning: 19151
         | 
| 348 | 
            +
            2022-04-09 03:15:08,864 INFO [decode.py:736] Caught exception:
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                Some bad things happened. Please read the above error messages and stack
         | 
| 351 | 
            +
                trace. If you are using Python, the following command may be helpful:
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                  gdb --args python /path/to/your/code.py
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                (You can use `gdb` to debug the code. Please consider compiling
         | 
| 356 | 
            +
                a debug version of k2.).
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                If you are unable to fix it, please open an issue at:
         | 
| 359 | 
            +
             | 
| 360 | 
            +
                  https://github.com/k2-fsa/k2/issues/new
         | 
| 361 | 
            +
                
         | 
| 362 | 
            +
             | 
| 363 | 
            +
            2022-04-09 03:15:08,864 INFO [decode.py:743] num_arcs before pruning: 123833
         | 
| 364 | 
            +
            2022-04-09 03:15:08,864 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 365 | 
            +
            2022-04-09 03:15:08,913 INFO [decode.py:757] num_arcs after pruning: 4150
         | 
| 366 | 
            +
            2022-04-09 03:15:34,899 INFO [decode.py:736] Caught exception:
         | 
| 367 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.64 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 368 | 
            +
             | 
| 369 | 
            +
            2022-04-09 03:15:34,899 INFO [decode.py:743] num_arcs before pruning: 444800
         | 
| 370 | 
            +
            2022-04-09 03:15:34,899 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 371 | 
            +
            2022-04-09 03:15:34,908 INFO [decode.py:757] num_arcs after pruning: 11839
         | 
| 372 | 
            +
            2022-04-09 03:16:08,462 INFO [decode_test.py:497] batch 4500/?, cuts processed until now is 13295
         | 
| 373 | 
            +
            2022-04-09 03:17:56,946 INFO [decode_test.py:497] batch 4600/?, cuts processed until now is 13593
         | 
| 374 | 
            +
            2022-04-09 03:18:16,099 INFO [decode.py:736] Caught exception:
         | 
| 375 | 
            +
            CUDA out of memory. Tried to allocate 5.53 GiB (GPU 0; 31.75 GiB total capacity; 26.53 GiB already allocated; 1.12 GiB free; 29.28 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 376 | 
            +
             | 
| 377 | 
            +
            2022-04-09 03:18:16,099 INFO [decode.py:743] num_arcs before pruning: 350609
         | 
| 378 | 
            +
            2022-04-09 03:18:16,100 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 379 | 
            +
            2022-04-09 03:18:16,105 INFO [decode.py:757] num_arcs after pruning: 9262
         | 
| 380 | 
            +
            2022-04-09 03:19:57,230 INFO [decode_test.py:497] batch 4700/?, cuts processed until now is 13858
         | 
| 381 | 
            +
            2022-04-09 03:20:19,775 INFO [decode.py:736] Caught exception:
         | 
| 382 | 
            +
            CUDA out of memory. Tried to allocate 4.87 GiB (GPU 0; 31.75 GiB total capacity; 25.78 GiB already allocated; 1.12 GiB free; 29.28 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 383 | 
            +
             | 
| 384 | 
            +
            2022-04-09 03:20:19,775 INFO [decode.py:743] num_arcs before pruning: 375071
         | 
| 385 | 
            +
            2022-04-09 03:20:19,775 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 386 | 
            +
            2022-04-09 03:20:19,785 INFO [decode.py:757] num_arcs after pruning: 6365
         | 
| 387 | 
            +
            2022-04-09 03:21:29,481 INFO [decode.py:736] Caught exception:
         | 
| 388 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 1.12 GiB free; 29.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 389 | 
            +
             | 
| 390 | 
            +
            2022-04-09 03:21:29,481 INFO [decode.py:743] num_arcs before pruning: 872088
         | 
| 391 | 
            +
            2022-04-09 03:21:29,481 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 392 | 
            +
            2022-04-09 03:21:29,492 INFO [decode.py:757] num_arcs after pruning: 10043
         | 
| 393 | 
            +
            2022-04-09 03:22:01,760 INFO [decode_test.py:497] batch 4800/?, cuts processed until now is 14079
         | 
| 394 | 
            +
            2022-04-09 03:24:10,370 INFO [decode_test.py:497] batch 4900/?, cuts processed until now is 14298
         | 
| 395 | 
            +
            2022-04-09 03:26:10,811 INFO [decode_test.py:497] batch 5000/?, cuts processed until now is 14515
         | 
| 396 | 
            +
            2022-04-09 03:27:46,191 INFO [decode.py:736] Caught exception:
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                Some bad things happened. Please read the above error messages and stack
         | 
| 399 | 
            +
                trace. If you are using Python, the following command may be helpful:
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                  gdb --args python /path/to/your/code.py
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                (You can use `gdb` to debug the code. Please consider compiling
         | 
| 404 | 
            +
                a debug version of k2.).
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                If you are unable to fix it, please open an issue at:
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                  https://github.com/k2-fsa/k2/issues/new
         | 
| 409 | 
            +
                
         | 
| 410 | 
            +
             | 
| 411 | 
            +
            2022-04-09 03:27:46,192 INFO [decode.py:743] num_arcs before pruning: 246382
         | 
| 412 | 
            +
            2022-04-09 03:27:46,192 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 413 | 
            +
            2022-04-09 03:27:46,253 INFO [decode.py:757] num_arcs after pruning: 6775
         | 
| 414 | 
            +
            2022-04-09 03:28:15,199 INFO [decode_test.py:497] batch 5100/?, cuts processed until now is 14718
         | 
| 415 | 
            +
            2022-04-09 03:29:19,807 INFO [decode.py:736] Caught exception:
         | 
| 416 | 
            +
            CUDA out of memory. Tried to allocate 6.15 GiB (GPU 0; 31.75 GiB total capacity; 26.67 GiB already allocated; 1.11 GiB free; 29.29 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 417 | 
            +
             | 
| 418 | 
            +
            2022-04-09 03:29:19,808 INFO [decode.py:743] num_arcs before pruning: 220820
         | 
| 419 | 
            +
            2022-04-09 03:29:19,808 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 420 | 
            +
            2022-04-09 03:29:19,815 INFO [decode.py:757] num_arcs after pruning: 13482
         | 
| 421 | 
            +
            2022-04-09 03:30:16,045 INFO [decode_test.py:497] batch 5200/?, cuts processed until now is 14930
         | 
| 422 | 
            +
            2022-04-09 03:32:12,235 INFO [decode_test.py:497] batch 5300/?, cuts processed until now is 15128
         | 
| 423 | 
            +
            2022-04-09 03:33:06,358 INFO [decode.py:736] Caught exception:
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                Some bad things happened. Please read the above error messages and stack
         | 
| 426 | 
            +
                trace. If you are using Python, the following command may be helpful:
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                  gdb --args python /path/to/your/code.py
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                (You can use `gdb` to debug the code. Please consider compiling
         | 
| 431 | 
            +
                a debug version of k2.).
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                If you are unable to fix it, please open an issue at:
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                  https://github.com/k2-fsa/k2/issues/new
         | 
| 436 | 
            +
                
         | 
| 437 | 
            +
             | 
| 438 | 
            +
            2022-04-09 03:33:06,359 INFO [decode.py:743] num_arcs before pruning: 190203
         | 
| 439 | 
            +
            2022-04-09 03:33:06,359 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 440 | 
            +
            2022-04-09 03:33:06,413 INFO [decode.py:757] num_arcs after pruning: 6202
         | 
| 441 | 
            +
            2022-04-09 03:34:14,862 INFO [decode_test.py:497] batch 5400/?, cuts processed until now is 15327
         | 
| 442 | 
            +
            2022-04-09 03:36:18,973 INFO [decode_test.py:497] batch 5500/?, cuts processed until now is 15531
         | 
| 443 | 
            +
            2022-04-09 03:38:18,633 INFO [decode_test.py:497] batch 5600/?, cuts processed until now is 15724
         | 
| 444 | 
            +
            2022-04-09 03:38:48,490 INFO [decode.py:736] Caught exception:
         | 
| 445 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.52 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 446 | 
            +
             | 
| 447 | 
            +
            2022-04-09 03:38:48,491 INFO [decode.py:743] num_arcs before pruning: 554330
         | 
| 448 | 
            +
            2022-04-09 03:38:48,491 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 449 | 
            +
            2022-04-09 03:38:48,500 INFO [decode.py:757] num_arcs after pruning: 10730
         | 
| 450 | 
            +
            2022-04-09 03:39:51,281 INFO [decode.py:736] Caught exception:
         | 
| 451 | 
            +
            CUDA out of memory. Tried to allocate 4.83 GiB (GPU 0; 31.75 GiB total capacity; 25.96 GiB already allocated; 1.31 GiB free; 29.08 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 452 | 
            +
             | 
| 453 | 
            +
            2022-04-09 03:39:51,281 INFO [decode.py:743] num_arcs before pruning: 160031
         | 
| 454 | 
            +
            2022-04-09 03:39:51,281 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 455 | 
            +
            2022-04-09 03:39:51,288 INFO [decode.py:757] num_arcs after pruning: 4270
         | 
| 456 | 
            +
            2022-04-09 03:40:28,016 INFO [decode_test.py:497] batch 5700/?, cuts processed until now is 15908
         | 
| 457 | 
            +
            2022-04-09 03:40:46,608 INFO [decode.py:736] Caught exception:
         | 
| 458 | 
            +
            CUDA out of memory. Tried to allocate 2.58 GiB (GPU 0; 31.75 GiB total capacity; 27.28 GiB already allocated; 1.32 GiB free; 29.07 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 459 | 
            +
             | 
| 460 | 
            +
            2022-04-09 03:40:46,608 INFO [decode.py:743] num_arcs before pruning: 406026
         | 
| 461 | 
            +
            2022-04-09 03:40:46,608 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 462 | 
            +
            2022-04-09 03:40:46,616 INFO [decode.py:757] num_arcs after pruning: 11179
         | 
| 463 | 
            +
            2022-04-09 03:42:16,464 INFO [decode.py:736] Caught exception:
         | 
| 464 | 
            +
            CUDA out of memory. Tried to allocate 2.29 GiB (GPU 0; 31.75 GiB total capacity; 26.71 GiB already allocated; 1.32 GiB free; 29.07 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 465 | 
            +
             | 
| 466 | 
            +
            2022-04-09 03:42:16,464 INFO [decode.py:743] num_arcs before pruning: 639824
         | 
| 467 | 
            +
            2022-04-09 03:42:16,464 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 468 | 
            +
            2022-04-09 03:42:16,476 INFO [decode.py:757] num_arcs after pruning: 5520
         | 
| 469 | 
            +
            2022-04-09 03:42:52,683 INFO [decode_test.py:497] batch 5800/?, cuts processed until now is 16094
         | 
| 470 | 
            +
            2022-04-09 03:44:51,754 INFO [decode_test.py:497] batch 5900/?, cuts processed until now is 16289
         | 
| 471 | 
            +
            2022-04-09 03:46:52,121 INFO [decode_test.py:497] batch 6000/?, cuts processed until now is 16488
         | 
| 472 | 
            +
            2022-04-09 03:48:54,739 INFO [decode_test.py:497] batch 6100/?, cuts processed until now is 16661
         | 
| 473 | 
            +
            2022-04-09 03:49:24,829 INFO [decode.py:736] Caught exception:
         | 
| 474 | 
            +
            CUDA out of memory. Tried to allocate 1.84 GiB (GPU 0; 31.75 GiB total capacity; 28.87 GiB already allocated; 409.75 MiB free; 29.99 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 475 | 
            +
             | 
| 476 | 
            +
            2022-04-09 03:49:24,830 INFO [decode.py:743] num_arcs before pruning: 443401
         | 
| 477 | 
            +
            2022-04-09 03:49:24,830 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 478 | 
            +
            2022-04-09 03:49:24,837 INFO [decode.py:757] num_arcs after pruning: 5211
         | 
| 479 | 
            +
            2022-04-09 03:50:27,492 INFO [decode.py:736] Caught exception:
         | 
| 480 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.35 GiB already allocated; 2.15 GiB free; 28.24 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 481 | 
            +
             | 
| 482 | 
            +
            2022-04-09 03:50:27,493 INFO [decode.py:743] num_arcs before pruning: 361598
         | 
| 483 | 
            +
            2022-04-09 03:50:27,493 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 484 | 
            +
            2022-04-09 03:50:27,507 INFO [decode.py:757] num_arcs after pruning: 8660
         | 
| 485 | 
            +
            2022-04-09 03:51:02,856 INFO [decode_test.py:497] batch 6200/?, cuts processed until now is 16828
         | 
| 486 | 
            +
            2022-04-09 03:53:03,912 INFO [decode_test.py:497] batch 6300/?, cuts processed until now is 17002
         | 
| 487 | 
            +
            2022-04-09 03:55:04,964 INFO [decode_test.py:497] batch 6400/?, cuts processed until now is 17181
         | 
| 488 | 
            +
            2022-04-09 03:55:08,345 INFO [decode.py:736] Caught exception:
         | 
| 489 | 
            +
            CUDA out of memory. Tried to allocate 4.89 GiB (GPU 0; 31.75 GiB total capacity; 26.28 GiB already allocated; 2.16 GiB free; 28.24 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 490 | 
            +
             | 
| 491 | 
            +
            2022-04-09 03:55:08,345 INFO [decode.py:743] num_arcs before pruning: 867262
         | 
| 492 | 
            +
            2022-04-09 03:55:08,345 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 493 | 
            +
            2022-04-09 03:55:08,356 INFO [decode.py:757] num_arcs after pruning: 6494
         | 
| 494 | 
            +
            2022-04-09 03:56:03,884 INFO [decode.py:736] Caught exception:
         | 
| 495 | 
            +
            CUDA out of memory. Tried to allocate 1.90 GiB (GPU 0; 31.75 GiB total capacity; 28.97 GiB already allocated; 1.16 GiB free; 29.23 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 496 | 
            +
             | 
| 497 | 
            +
            2022-04-09 03:56:03,885 INFO [decode.py:743] num_arcs before pruning: 233755
         | 
| 498 | 
            +
            2022-04-09 03:56:03,885 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 499 | 
            +
            2022-04-09 03:56:03,910 INFO [decode.py:757] num_arcs after pruning: 5823
         | 
| 500 | 
            +
            2022-04-09 03:57:08,774 INFO [decode_test.py:497] batch 6500/?, cuts processed until now is 17347
         | 
| 501 | 
            +
            2022-04-09 03:59:01,245 INFO [decode_test.py:497] batch 6600/?, cuts processed until now is 17502
         | 
| 502 | 
            +
            2022-04-09 03:59:13,147 INFO [decode.py:736] Caught exception:
         | 
| 503 | 
            +
            CUDA out of memory. Tried to allocate 5.80 GiB (GPU 0; 31.75 GiB total capacity; 26.73 GiB already allocated; 1.17 GiB free; 29.22 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 504 | 
            +
             | 
| 505 | 
            +
            2022-04-09 03:59:13,147 INFO [decode.py:743] num_arcs before pruning: 174004
         | 
| 506 | 
            +
            2022-04-09 03:59:13,147 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 507 | 
            +
            2022-04-09 03:59:13,155 INFO [decode.py:757] num_arcs after pruning: 6857
         | 
| 508 | 
            +
            2022-04-09 04:00:59,687 INFO [decode_test.py:497] batch 6700/?, cuts processed until now is 17661
         | 
| 509 | 
            +
            2022-04-09 04:03:01,660 INFO [decode_test.py:497] batch 6800/?, cuts processed until now is 17823
         | 
| 510 | 
            +
            2022-04-09 04:04:55,219 INFO [decode_test.py:497] batch 6900/?, cuts processed until now is 17997
         | 
| 511 | 
            +
            2022-04-09 04:07:05,841 INFO [decode_test.py:497] batch 7000/?, cuts processed until now is 18159
         | 
| 512 | 
            +
            2022-04-09 04:09:04,994 INFO [decode_test.py:497] batch 7100/?, cuts processed until now is 18299
         | 
| 513 | 
            +
            2022-04-09 04:11:07,439 INFO [decode_test.py:497] batch 7200/?, cuts processed until now is 18432
         | 
| 514 | 
            +
            2022-04-09 04:13:18,126 INFO [decode_test.py:497] batch 7300/?, cuts processed until now is 18552
         | 
| 515 | 
            +
            2022-04-09 04:15:23,102 INFO [decode_test.py:497] batch 7400/?, cuts processed until now is 18656
         | 
| 516 | 
            +
            2022-04-09 04:17:49,550 INFO [decode_test.py:497] batch 7500/?, cuts processed until now is 18798
         | 
| 517 | 
            +
            2022-04-09 04:19:16,128 INFO [decode.py:736] Caught exception:
         | 
| 518 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.34 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 519 | 
            +
             | 
| 520 | 
            +
            2022-04-09 04:19:16,129 INFO [decode.py:743] num_arcs before pruning: 1155990
         | 
| 521 | 
            +
            2022-04-09 04:19:16,129 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 522 | 
            +
            2022-04-09 04:19:16,143 INFO [decode.py:757] num_arcs after pruning: 9141
         | 
| 523 | 
            +
            2022-04-09 04:20:19,961 INFO [decode_test.py:497] batch 7600/?, cuts processed until now is 18945
         | 
| 524 | 
            +
            2022-04-09 04:22:44,642 INFO [decode_test.py:497] batch 7700/?, cuts processed until now is 19084
         | 
| 525 | 
            +
            2022-04-09 04:23:18,184 INFO [decode.py:841] Caught exception:
         | 
| 526 | 
            +
            CUDA out of memory. Tried to allocate 1.26 GiB (GPU 0; 31.75 GiB total capacity; 27.36 GiB already allocated; 881.75 MiB free; 29.53 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 527 | 
            +
             | 
| 528 | 
            +
            2022-04-09 04:23:18,184 INFO [decode.py:843] num_paths before decreasing: 1000
         | 
| 529 | 
            +
            2022-04-09 04:23:18,184 INFO [decode.py:852] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 530 | 
            +
            2022-04-09 04:23:18,184 INFO [decode.py:858] num_paths after decreasing: 500
         | 
| 531 | 
            +
            2022-04-09 04:24:52,959 INFO [decode.py:736] Caught exception:
         | 
| 532 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.53 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 533 | 
            +
             | 
| 534 | 
            +
            2022-04-09 04:24:52,960 INFO [decode.py:743] num_arcs before pruning: 624026
         | 
| 535 | 
            +
            2022-04-09 04:24:52,960 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 536 | 
            +
            2022-04-09 04:24:52,972 INFO [decode.py:757] num_arcs after pruning: 10008
         | 
| 537 | 
            +
            2022-04-09 04:25:07,718 INFO [decode_test.py:497] batch 7800/?, cuts processed until now is 19232
         | 
| 538 | 
            +
            2022-04-09 04:25:31,876 INFO [decode.py:736] Caught exception:
         | 
| 539 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.51 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 540 | 
            +
             | 
| 541 | 
            +
            2022-04-09 04:25:31,876 INFO [decode.py:743] num_arcs before pruning: 688909
         | 
| 542 | 
            +
            2022-04-09 04:25:31,877 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 543 | 
            +
            2022-04-09 04:25:31,887 INFO [decode.py:757] num_arcs after pruning: 8886
         | 
| 544 | 
            +
            2022-04-09 04:25:57,970 INFO [decode.py:736] Caught exception:
         | 
| 545 | 
            +
            CUDA out of memory. Tried to allocate 5.04 GiB (GPU 0; 31.75 GiB total capacity; 25.95 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 546 | 
            +
             | 
| 547 | 
            +
            2022-04-09 04:25:57,971 INFO [decode.py:743] num_arcs before pruning: 891176
         | 
| 548 | 
            +
            2022-04-09 04:25:57,971 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 549 | 
            +
            2022-04-09 04:25:57,982 INFO [decode.py:757] num_arcs after pruning: 10106
         | 
| 550 | 
            +
            2022-04-09 04:26:19,609 INFO [decode.py:736] Caught exception:
         | 
| 551 | 
            +
            CUDA out of memory. Tried to allocate 2.63 GiB (GPU 0; 31.75 GiB total capacity; 27.60 GiB already allocated; 327.75 MiB free; 30.07 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 552 | 
            +
             | 
| 553 | 
            +
            2022-04-09 04:26:19,609 INFO [decode.py:743] num_arcs before pruning: 415376
         | 
| 554 | 
            +
            2022-04-09 04:26:19,609 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 555 | 
            +
            2022-04-09 04:26:19,620 INFO [decode.py:757] num_arcs after pruning: 7771
         | 
| 556 | 
            +
            2022-04-09 04:27:33,059 INFO [decode_test.py:497] batch 7900/?, cuts processed until now is 19375
         | 
| 557 | 
            +
            2022-04-09 04:29:43,649 INFO [decode_test.py:497] batch 8000/?, cuts processed until now is 19510
         | 
| 558 | 
            +
            2022-04-09 04:30:20,590 INFO [decode.py:736] Caught exception:
         | 
| 559 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.65 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 560 | 
            +
             | 
| 561 | 
            +
            2022-04-09 04:30:20,591 INFO [decode.py:743] num_arcs before pruning: 330767
         | 
| 562 | 
            +
            2022-04-09 04:30:20,591 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 563 | 
            +
            2022-04-09 04:30:20,606 INFO [decode.py:757] num_arcs after pruning: 5820
         | 
| 564 | 
            +
            2022-04-09 04:31:55,818 INFO [decode_test.py:497] batch 8100/?, cuts processed until now is 19643
         | 
| 565 | 
            +
            2022-04-09 04:34:11,720 INFO [decode_test.py:497] batch 8200/?, cuts processed until now is 19776
         | 
| 566 | 
            +
            2022-04-09 04:35:04,147 INFO [decode.py:736] Caught exception:
         | 
| 567 | 
            +
            CUDA out of memory. Tried to allocate 4.49 GiB (GPU 0; 31.75 GiB total capacity; 24.38 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 568 | 
            +
             | 
| 569 | 
            +
            2022-04-09 04:35:04,147 INFO [decode.py:743] num_arcs before pruning: 533967
         | 
| 570 | 
            +
            2022-04-09 04:35:04,147 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 571 | 
            +
            2022-04-09 04:35:04,157 INFO [decode.py:757] num_arcs after pruning: 3449
         | 
| 572 | 
            +
            2022-04-09 04:36:15,595 INFO [decode.py:736] Caught exception:
         | 
| 573 | 
            +
            CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.67 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
         | 
| 574 | 
            +
             | 
| 575 | 
            +
            2022-04-09 04:36:15,595 INFO [decode.py:743] num_arcs before pruning: 397138
         | 
| 576 | 
            +
            2022-04-09 04:36:15,596 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 577 | 
            +
            2022-04-09 04:36:15,605 INFO [decode.py:757] num_arcs after pruning: 6775
         | 
| 578 | 
            +
            2022-04-09 04:36:31,844 INFO [decode_test.py:497] batch 8300/?, cuts processed until now is 19882
         | 
| 579 | 
            +
            2022-04-09 04:37:04,130 INFO [decode.py:736] Caught exception:
         | 
| 580 | 
            +
             | 
| 581 | 
            +
                Some bad things happened. Please read the above error messages and stack
         | 
| 582 | 
            +
                trace. If you are using Python, the following command may be helpful:
         | 
| 583 | 
            +
             | 
| 584 | 
            +
                  gdb --args python /path/to/your/code.py
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                (You can use `gdb` to debug the code. Please consider compiling
         | 
| 587 | 
            +
                a debug version of k2.).
         | 
| 588 | 
            +
             | 
| 589 | 
            +
                If you are unable to fix it, please open an issue at:
         | 
| 590 | 
            +
             | 
| 591 | 
            +
                  https://github.com/k2-fsa/k2/issues/new
         | 
| 592 | 
            +
                
         | 
| 593 | 
            +
             | 
| 594 | 
            +
            2022-04-09 04:37:04,130 INFO [decode.py:743] num_arcs before pruning: 456591
         | 
| 595 | 
            +
            2022-04-09 04:37:04,130 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
         | 
| 596 | 
            +
            2022-04-09 04:37:04,180 INFO [decode.py:757] num_arcs after pruning: 5275
         | 
| 597 | 
            +
            2022-04-09 04:57:33,432 INFO [decode_test.py:567] 
         | 
| 598 | 
            +
            For test, WER of different settings are:
         | 
| 599 | 
            +
            ngram_lm_scale_0.3_attention_scale_0.7	10.58	best for test
         | 
| 600 | 
            +
            ngram_lm_scale_0.5_attention_scale_1.3	10.58
         | 
| 601 | 
            +
            ngram_lm_scale_0.3_attention_scale_0.5	10.59
         | 
| 602 | 
            +
            ngram_lm_scale_0.3_attention_scale_0.6	10.59
         | 
| 603 | 
            +
            ngram_lm_scale_0.3_attention_scale_0.9	10.59
         | 
| 604 | 
            +
            ngram_lm_scale_0.3_attention_scale_1.0	10.59
         | 
| 605 | 
            +
            ngram_lm_scale_0.3_attention_scale_1.1	10.59
         | 
| 606 | 
            +
            ngram_lm_scale_0.3_attention_scale_1.2	10.59
         | 
| 607 | 
            +
            ngram_lm_scale_0.3_attention_scale_1.3	10.59
         | 
| 608 | 
            +
            ngram_lm_scale_0.5_attention_scale_1.0	10.59
         | 
| 609 | 
            +
            ngram_lm_scale_0.5_attention_scale_1.1	10.59
         | 
| 610 | 
            +
            ngram_lm_scale_0.5_attention_scale_1.2	10.59
         | 
| 611 | 
            +
            ngram_lm_scale_0.5_attention_scale_1.5	10.59
         | 
| 612 | 
            +
            ngram_lm_scale_0.5_attention_scale_1.7	10.59
         | 
| 613 | 
            +
            ngram_lm_scale_0.5_attention_scale_1.9	10.59
         | 
| 614 | 
            +
            ngram_lm_scale_0.5_attention_scale_2.0	10.59
         | 
| 615 | 
            +
            ngram_lm_scale_0.5_attention_scale_2.1	10.59
         | 
| 616 | 
            +
            ngram_lm_scale_0.5_attention_scale_2.2	10.59
         | 
| 617 | 
            +
            ngram_lm_scale_0.5_attention_scale_2.3	10.59
         | 
| 618 | 
            +
            ngram_lm_scale_0.6_attention_scale_1.9	10.59
         | 
| 619 | 
            +
            ngram_lm_scale_0.6_attention_scale_2.0	10.59
         | 
| 620 | 
            +
            ngram_lm_scale_0.6_attention_scale_2.1	10.59
         | 
| 621 | 
            +
            ngram_lm_scale_0.6_attention_scale_2.2	10.59
         | 
| 622 | 
            +
            ngram_lm_scale_0.6_attention_scale_2.3	10.59
         | 
| 623 | 
            +
            ngram_lm_scale_0.6_attention_scale_2.5	10.59
         | 
| 624 | 
            +
            ngram_lm_scale_0.3_attention_scale_1.5	10.6
         | 
| 625 | 
            +
            ngram_lm_scale_0.3_attention_scale_1.7	10.6
         | 
| 626 | 
            +
            ngram_lm_scale_0.3_attention_scale_1.9	10.6
         | 
| 627 | 
            +
            ngram_lm_scale_0.3_attention_scale_2.0	10.6
         | 
| 628 | 
            +
            ngram_lm_scale_0.3_attention_scale_2.1	10.6
         | 
| 629 | 
            +
            ngram_lm_scale_0.3_attention_scale_2.2	10.6
         | 
| 630 | 
            +
            ngram_lm_scale_0.3_attention_scale_2.3	10.6
         | 
| 631 | 
            +
            ngram_lm_scale_0.3_attention_scale_2.5	10.6
         | 
| 632 | 
            +
            ngram_lm_scale_0.5_attention_scale_0.9	10.6
         | 
| 633 | 
            +
            ngram_lm_scale_0.5_attention_scale_2.5	10.6
         | 
| 634 | 
            +
            ngram_lm_scale_0.5_attention_scale_3.0	10.6
         | 
| 635 | 
            +
            ngram_lm_scale_0.6_attention_scale_1.3	10.6
         | 
| 636 | 
            +
            ngram_lm_scale_0.6_attention_scale_1.5	10.6
         | 
| 637 | 
            +
            ngram_lm_scale_0.6_attention_scale_1.7	10.6
         | 
| 638 | 
            +
            ngram_lm_scale_0.6_attention_scale_3.0	10.6
         | 
| 639 | 
            +
            ngram_lm_scale_0.3_attention_scale_0.3	10.61
         | 
| 640 | 
            +
            ngram_lm_scale_0.3_attention_scale_3.0	10.61
         | 
| 641 | 
            +
            ngram_lm_scale_0.5_attention_scale_4.0	10.61
         | 
| 642 | 
            +
            ngram_lm_scale_0.5_attention_scale_5.0	10.61
         | 
| 643 | 
            +
            ngram_lm_scale_0.6_attention_scale_1.2	10.61
         | 
| 644 | 
            +
            ngram_lm_scale_0.6_attention_scale_4.0	10.61
         | 
| 645 | 
            +
            ngram_lm_scale_0.6_attention_scale_5.0	10.61
         | 
| 646 | 
            +
            ngram_lm_scale_0.7_attention_scale_1.7	10.61
         | 
| 647 | 
            +
            ngram_lm_scale_0.7_attention_scale_1.9	10.61
         | 
| 648 | 
            +
            ngram_lm_scale_0.7_attention_scale_2.0	10.61
         | 
| 649 | 
            +
            ngram_lm_scale_0.7_attention_scale_2.1	10.61
         | 
| 650 | 
            +
            ngram_lm_scale_0.7_attention_scale_2.2	10.61
         | 
| 651 | 
            +
            ngram_lm_scale_0.7_attention_scale_2.3	10.61
         | 
| 652 | 
            +
            ngram_lm_scale_0.7_attention_scale_2.5	10.61
         | 
| 653 | 
            +
            ngram_lm_scale_0.7_attention_scale_3.0	10.61
         | 
| 654 | 
            +
            ngram_lm_scale_0.7_attention_scale_4.0	10.61
         | 
| 655 | 
            +
            ngram_lm_scale_0.7_attention_scale_5.0	10.61
         | 
| 656 | 
            +
            ngram_lm_scale_0.1_attention_scale_1.1	10.62
         | 
| 657 | 
            +
            ngram_lm_scale_0.3_attention_scale_4.0	10.62
         | 
| 658 | 
            +
            ngram_lm_scale_0.3_attention_scale_5.0	10.62
         | 
| 659 | 
            +
            ngram_lm_scale_0.5_attention_scale_0.7	10.62
         | 
| 660 | 
            +
            ngram_lm_scale_0.6_attention_scale_1.0	10.62
         | 
| 661 | 
            +
            ngram_lm_scale_0.6_attention_scale_1.1	10.62
         | 
| 662 | 
            +
            ngram_lm_scale_0.7_attention_scale_1.5	10.62
         | 
| 663 | 
            +
            ngram_lm_scale_0.9_attention_scale_3.0	10.62
         | 
| 664 | 
            +
            ngram_lm_scale_0.9_attention_scale_4.0	10.62
         | 
| 665 | 
            +
            ngram_lm_scale_0.9_attention_scale_5.0	10.62
         | 
| 666 | 
            +
            ngram_lm_scale_1.0_attention_scale_4.0	10.62
         | 
| 667 | 
            +
            ngram_lm_scale_1.1_attention_scale_5.0	10.62
         | 
| 668 | 
            +
            ngram_lm_scale_0.05_attention_scale_1.1	10.63
         | 
| 669 | 
            +
            ngram_lm_scale_0.05_attention_scale_1.2	10.63
         | 
| 670 | 
            +
            ngram_lm_scale_0.08_attention_scale_0.9	10.63
         | 
| 671 | 
            +
            ngram_lm_scale_0.08_attention_scale_1.0	10.63
         | 
| 672 | 
            +
            ngram_lm_scale_0.08_attention_scale_1.1	10.63
         | 
| 673 | 
            +
            ngram_lm_scale_0.08_attention_scale_1.2	10.63
         | 
| 674 | 
            +
            ngram_lm_scale_0.08_attention_scale_1.3	10.63
         | 
| 675 | 
            +
            ngram_lm_scale_0.08_attention_scale_1.9	10.63
         | 
| 676 | 
            +
            ngram_lm_scale_0.08_attention_scale_2.0	10.63
         | 
| 677 | 
            +
            ngram_lm_scale_0.08_attention_scale_2.1	10.63
         | 
| 678 | 
            +
            ngram_lm_scale_0.08_attention_scale_2.2	10.63
         | 
| 679 | 
            +
            ngram_lm_scale_0.08_attention_scale_2.3	10.63
         | 
| 680 | 
            +
            ngram_lm_scale_0.08_attention_scale_3.0	10.63
         | 
| 681 | 
            +
            ngram_lm_scale_0.1_attention_scale_0.5	10.63
         | 
| 682 | 
            +
            ngram_lm_scale_0.1_attention_scale_0.6	10.63
         | 
| 683 | 
            +
            ngram_lm_scale_0.1_attention_scale_0.7	10.63
         | 
| 684 | 
            +
            ngram_lm_scale_0.1_attention_scale_0.9	10.63
         | 
| 685 | 
            +
            ngram_lm_scale_0.1_attention_scale_1.0	10.63
         | 
| 686 | 
            +
            ngram_lm_scale_0.1_attention_scale_1.2	10.63
         | 
| 687 | 
            +
            ngram_lm_scale_0.1_attention_scale_1.3	10.63
         | 
| 688 | 
            +
            ngram_lm_scale_0.1_attention_scale_1.7	10.63
         | 
| 689 | 
            +
            ngram_lm_scale_0.1_attention_scale_1.9	10.63
         | 
| 690 | 
            +
            ngram_lm_scale_0.1_attention_scale_2.0	10.63
         | 
| 691 | 
            +
            ngram_lm_scale_0.1_attention_scale_2.1	10.63
         | 
| 692 | 
            +
            ngram_lm_scale_0.1_attention_scale_2.2	10.63
         | 
| 693 | 
            +
            ngram_lm_scale_0.1_attention_scale_2.3	10.63
         | 
| 694 | 
            +
            ngram_lm_scale_0.1_attention_scale_2.5	10.63
         | 
| 695 | 
            +
            ngram_lm_scale_0.1_attention_scale_3.0	10.63
         | 
| 696 | 
            +
            ngram_lm_scale_0.1_attention_scale_5.0	10.63
         | 
| 697 | 
            +
            ngram_lm_scale_0.5_attention_scale_0.6	10.63
         | 
| 698 | 
            +
            ngram_lm_scale_0.6_attention_scale_0.9	10.63
         | 
| 699 | 
            +
            ngram_lm_scale_0.9_attention_scale_2.3	10.63
         | 
| 700 | 
            +
            ngram_lm_scale_0.9_attention_scale_2.5	10.63
         | 
| 701 | 
            +
            ngram_lm_scale_1.0_attention_scale_5.0	10.63
         | 
| 702 | 
            +
            ngram_lm_scale_1.2_attention_scale_5.0	10.63
         | 
| 703 | 
            +
            ngram_lm_scale_0.01_attention_scale_0.9	10.64
         | 
| 704 | 
            +
            ngram_lm_scale_0.01_attention_scale_1.0	10.64
         | 
| 705 | 
            +
            ngram_lm_scale_0.01_attention_scale_1.1	10.64
         | 
| 706 | 
            +
            ngram_lm_scale_0.01_attention_scale_1.2	10.64
         | 
| 707 | 
            +
            ngram_lm_scale_0.01_attention_scale_4.0	10.64
         | 
| 708 | 
            +
            ngram_lm_scale_0.01_attention_scale_5.0	10.64
         | 
| 709 | 
            +
            ngram_lm_scale_0.05_attention_scale_0.5	10.64
         | 
| 710 | 
            +
            ngram_lm_scale_0.05_attention_scale_0.6	10.64
         | 
| 711 | 
            +
            ngram_lm_scale_0.05_attention_scale_0.7	10.64
         | 
| 712 | 
            +
            ngram_lm_scale_0.05_attention_scale_0.9	10.64
         | 
| 713 | 
            +
            ngram_lm_scale_0.05_attention_scale_1.0	10.64
         | 
| 714 | 
            +
            ngram_lm_scale_0.05_attention_scale_1.3	10.64
         | 
| 715 | 
            +
            ngram_lm_scale_0.05_attention_scale_1.5	10.64
         | 
| 716 | 
            +
            ngram_lm_scale_0.05_attention_scale_1.7	10.64
         | 
| 717 | 
            +
            ngram_lm_scale_0.05_attention_scale_1.9	10.64
         | 
| 718 | 
            +
            ngram_lm_scale_0.05_attention_scale_2.0	10.64
         | 
| 719 | 
            +
            ngram_lm_scale_0.05_attention_scale_2.1	10.64
         | 
| 720 | 
            +
            ngram_lm_scale_0.05_attention_scale_2.2	10.64
         | 
| 721 | 
            +
            ngram_lm_scale_0.05_attention_scale_2.3	10.64
         | 
| 722 | 
            +
            ngram_lm_scale_0.05_attention_scale_2.5	10.64
         | 
| 723 | 
            +
            ngram_lm_scale_0.05_attention_scale_3.0	10.64
         | 
| 724 | 
            +
            ngram_lm_scale_0.05_attention_scale_4.0	10.64
         | 
| 725 | 
            +
            ngram_lm_scale_0.05_attention_scale_5.0	10.64
         | 
| 726 | 
            +
            ngram_lm_scale_0.08_attention_scale_0.5	10.64
         | 
| 727 | 
            +
            ngram_lm_scale_0.08_attention_scale_0.6	10.64
         | 
| 728 | 
            +
            ngram_lm_scale_0.08_attention_scale_0.7	10.64
         | 
| 729 | 
            +
            ngram_lm_scale_0.08_attention_scale_1.5	10.64
         | 
| 730 | 
            +
            ngram_lm_scale_0.08_attention_scale_1.7	10.64
         | 
| 731 | 
            +
            ngram_lm_scale_0.08_attention_scale_2.5	10.64
         | 
| 732 | 
            +
            ngram_lm_scale_0.08_attention_scale_4.0	10.64
         | 
| 733 | 
            +
            ngram_lm_scale_0.08_attention_scale_5.0	10.64
         | 
| 734 | 
            +
            ngram_lm_scale_0.1_attention_scale_0.3	10.64
         | 
| 735 | 
            +
            ngram_lm_scale_0.1_attention_scale_1.5	10.64
         | 
| 736 | 
            +
            ngram_lm_scale_0.1_attention_scale_4.0	10.64
         | 
| 737 | 
            +
            ngram_lm_scale_0.7_attention_scale_1.3	10.64
         | 
| 738 | 
            +
            ngram_lm_scale_0.9_attention_scale_2.2	10.64
         | 
| 739 | 
            +
            ngram_lm_scale_1.0_attention_scale_3.0	10.64
         | 
| 740 | 
            +
            ngram_lm_scale_1.1_attention_scale_4.0	10.64
         | 
| 741 | 
            +
            ngram_lm_scale_1.3_attention_scale_5.0	10.64
         | 
| 742 | 
            +
            ngram_lm_scale_0.01_attention_scale_0.6	10.65
         | 
| 743 | 
            +
            ngram_lm_scale_0.01_attention_scale_0.7	10.65
         | 
| 744 | 
            +
            ngram_lm_scale_0.01_attention_scale_1.3	10.65
         | 
| 745 | 
            +
            ngram_lm_scale_0.01_attention_scale_1.5	10.65
         | 
| 746 | 
            +
            ngram_lm_scale_0.01_attention_scale_1.7	10.65
         | 
| 747 | 
            +
            ngram_lm_scale_0.01_attention_scale_1.9	10.65
         | 
| 748 | 
            +
            ngram_lm_scale_0.01_attention_scale_2.0	10.65
         | 
| 749 | 
            +
            ngram_lm_scale_0.01_attention_scale_2.1	10.65
         | 
| 750 | 
            +
            ngram_lm_scale_0.01_attention_scale_2.2	10.65
         | 
| 751 | 
            +
            ngram_lm_scale_0.01_attention_scale_2.3	10.65
         | 
| 752 | 
            +
            ngram_lm_scale_0.01_attention_scale_2.5	10.65
         | 
| 753 | 
            +
            ngram_lm_scale_0.01_attention_scale_3.0	10.65
         | 
| 754 | 
            +
            ngram_lm_scale_0.08_attention_scale_0.3	10.65
         | 
| 755 | 
            +
            ngram_lm_scale_0.5_attention_scale_0.5	10.65
         | 
| 756 | 
            +
            ngram_lm_scale_0.6_attention_scale_0.7	10.65
         | 
| 757 | 
            +
            ngram_lm_scale_0.7_attention_scale_1.1	10.65
         | 
| 758 | 
            +
            ngram_lm_scale_0.7_attention_scale_1.2	10.65
         | 
| 759 | 
            +
            ngram_lm_scale_0.9_attention_scale_2.1	10.65
         | 
| 760 | 
            +
            ngram_lm_scale_1.2_attention_scale_4.0	10.65
         | 
| 761 | 
            +
            ngram_lm_scale_0.05_attention_scale_0.3	10.66
         | 
| 762 | 
            +
            ngram_lm_scale_0.7_attention_scale_1.0	10.66
         | 
| 763 | 
            +
            ngram_lm_scale_0.9_attention_scale_1.9	10.66
         | 
| 764 | 
            +
            ngram_lm_scale_0.9_attention_scale_2.0	10.66
         | 
| 765 | 
            +
            ngram_lm_scale_1.0_attention_scale_2.5	10.66
         | 
| 766 | 
            +
            ngram_lm_scale_1.1_attention_scale_3.0	10.66
         | 
| 767 | 
            +
            ngram_lm_scale_0.01_attention_scale_0.5	10.67
         | 
| 768 | 
            +
            ngram_lm_scale_0.1_attention_scale_0.08	10.67
         | 
| 769 | 
            +
            ngram_lm_scale_0.1_attention_scale_0.1	10.67
         | 
| 770 | 
            +
            ngram_lm_scale_0.6_attention_scale_0.6	10.67
         | 
| 771 | 
            +
            ngram_lm_scale_0.9_attention_scale_1.7	10.67
         | 
| 772 | 
            +
            ngram_lm_scale_1.0_attention_scale_2.2	10.67
         | 
| 773 | 
            +
            ngram_lm_scale_1.0_attention_scale_2.3	10.67
         | 
| 774 | 
            +
            ngram_lm_scale_1.3_attention_scale_4.0	10.67
         | 
| 775 | 
            +
            ngram_lm_scale_1.5_attention_scale_5.0	10.67
         | 
| 776 | 
            +
            ngram_lm_scale_0.01_attention_scale_0.3	10.68
         | 
| 777 | 
            +
            ngram_lm_scale_0.08_attention_scale_0.08	10.68
         | 
| 778 | 
            +
            ngram_lm_scale_0.08_attention_scale_0.1	10.68
         | 
| 779 | 
            +
            ngram_lm_scale_0.3_attention_scale_0.08	10.68
         | 
| 780 | 
            +
            ngram_lm_scale_0.3_attention_scale_0.1	10.68
         | 
| 781 | 
            +
            ngram_lm_scale_0.7_attention_scale_0.9	10.68
         | 
| 782 | 
            +
            ngram_lm_scale_1.0_attention_scale_2.0	10.68
         | 
| 783 | 
            +
            ngram_lm_scale_1.0_attention_scale_2.1	10.68
         | 
| 784 | 
            +
            ngram_lm_scale_1.1_attention_scale_2.5	10.68
         | 
| 785 | 
            +
            ngram_lm_scale_1.2_attention_scale_3.0	10.68
         | 
| 786 | 
            +
            ngram_lm_scale_0.1_attention_scale_0.05	10.69
         | 
| 787 | 
            +
            ngram_lm_scale_0.5_attention_scale_0.3	10.69
         | 
| 788 | 
            +
            ngram_lm_scale_0.9_attention_scale_1.5	10.69
         | 
| 789 | 
            +
            ngram_lm_scale_1.0_attention_scale_1.9	10.69
         | 
| 790 | 
            +
            ngram_lm_scale_1.1_attention_scale_2.3	10.69
         | 
| 791 | 
            +
            ngram_lm_scale_0.05_attention_scale_0.1	10.7
         | 
| 792 | 
            +
            ngram_lm_scale_0.08_attention_scale_0.05	10.7
         | 
| 793 | 
            +
            ngram_lm_scale_0.3_attention_scale_0.05	10.7
         | 
| 794 | 
            +
            ngram_lm_scale_0.6_attention_scale_0.5	10.7
         | 
| 795 | 
            +
            ngram_lm_scale_1.1_attention_scale_2.2	10.7
         | 
| 796 | 
            +
            ngram_lm_scale_1.5_attention_scale_4.0	10.7
         | 
| 797 | 
            +
            ngram_lm_scale_1.7_attention_scale_5.0	10.7
         | 
| 798 | 
            +
            ngram_lm_scale_0.05_attention_scale_0.08	10.71
         | 
| 799 | 
            +
            ngram_lm_scale_1.1_attention_scale_2.1	10.71
         | 
| 800 | 
            +
            ngram_lm_scale_1.2_attention_scale_2.5	10.71
         | 
| 801 | 
            +
            ngram_lm_scale_1.3_attention_scale_3.0	10.71
         | 
| 802 | 
            +
            ngram_lm_scale_0.01_attention_scale_0.1	10.72
         | 
| 803 | 
            +
            ngram_lm_scale_0.05_attention_scale_0.05	10.72
         | 
| 804 | 
            +
            ngram_lm_scale_0.08_attention_scale_0.01	10.72
         | 
| 805 | 
            +
            ngram_lm_scale_0.1_attention_scale_0.01	10.72
         | 
| 806 | 
            +
            ngram_lm_scale_0.3_attention_scale_0.01	10.72
         | 
| 807 | 
            +
            ngram_lm_scale_0.7_attention_scale_0.7	10.72
         | 
| 808 | 
            +
            ngram_lm_scale_0.9_attention_scale_1.3	10.72
         | 
| 809 | 
            +
            ngram_lm_scale_1.0_attention_scale_1.7	10.72
         | 
| 810 | 
            +
            ngram_lm_scale_1.1_attention_scale_2.0	10.72
         | 
| 811 | 
            +
            ngram_lm_scale_0.01_attention_scale_0.08	10.73
         | 
| 812 | 
            +
            ngram_lm_scale_0.9_attention_scale_1.2	10.73
         | 
| 813 | 
            +
            ngram_lm_scale_1.1_attention_scale_1.9	10.73
         | 
| 814 | 
            +
            ngram_lm_scale_1.2_attention_scale_2.3	10.73
         | 
| 815 | 
            +
            ngram_lm_scale_1.0_attention_scale_1.5	10.74
         | 
| 816 | 
            +
            ngram_lm_scale_1.2_attention_scale_2.2	10.74
         | 
| 817 | 
            +
            ngram_lm_scale_1.3_attention_scale_2.5	10.74
         | 
| 818 | 
            +
            ngram_lm_scale_1.9_attention_scale_5.0	10.74
         | 
| 819 | 
            +
            ngram_lm_scale_0.01_attention_scale_0.05	10.75
         | 
| 820 | 
            +
            ngram_lm_scale_0.05_attention_scale_0.01	10.75
         | 
| 821 | 
            +
            ngram_lm_scale_0.7_attention_scale_0.6	10.75
         | 
| 822 | 
            +
            ngram_lm_scale_0.9_attention_scale_1.1	10.75
         | 
| 823 | 
            +
            ngram_lm_scale_1.1_attention_scale_1.7	10.75
         | 
| 824 | 
            +
            ngram_lm_scale_1.2_attention_scale_2.1	10.75
         | 
| 825 | 
            +
            ngram_lm_scale_1.7_attention_scale_4.0	10.75
         | 
| 826 | 
            +
            ngram_lm_scale_1.2_attention_scale_2.0	10.76
         | 
| 827 | 
            +
            ngram_lm_scale_1.3_attention_scale_2.3	10.76
         | 
| 828 | 
            +
            ngram_lm_scale_2.0_attention_scale_5.0	10.76
         | 
| 829 | 
            +
            ngram_lm_scale_1.0_attention_scale_1.3	10.77
         | 
| 830 | 
            +
            ngram_lm_scale_1.2_attention_scale_1.9	10.77
         | 
| 831 | 
            +
            ngram_lm_scale_1.5_attention_scale_3.0	10.77
         | 
| 832 | 
            +
            ngram_lm_scale_0.01_attention_scale_0.01	10.78
         | 
| 833 | 
            +
            ngram_lm_scale_0.6_attention_scale_0.3	10.78
         | 
| 834 | 
            +
            ngram_lm_scale_0.7_attention_scale_0.5	10.78
         | 
| 835 | 
            +
            ngram_lm_scale_0.9_attention_scale_1.0	10.78
         | 
| 836 | 
            +
            ngram_lm_scale_2.1_attention_scale_5.0	10.78
         | 
| 837 | 
            +
            ngram_lm_scale_1.1_attention_scale_1.5	10.79
         | 
| 838 | 
            +
            ngram_lm_scale_1.3_attention_scale_2.2	10.79
         | 
| 839 | 
            +
            ngram_lm_scale_0.5_attention_scale_0.1	10.8
         | 
| 840 | 
            +
            ngram_lm_scale_1.0_attention_scale_1.2	10.8
         | 
| 841 | 
            +
            ngram_lm_scale_1.3_attention_scale_2.1	10.8
         | 
| 842 | 
            +
            ngram_lm_scale_1.9_attention_scale_4.0	10.8
         | 
| 843 | 
            +
            ngram_lm_scale_2.2_attention_scale_5.0	10.8
         | 
| 844 | 
            +
            ngram_lm_scale_0.5_attention_scale_0.08	10.81
         | 
| 845 | 
            +
            ngram_lm_scale_0.9_attention_scale_0.9	10.81
         | 
| 846 | 
            +
            ngram_lm_scale_1.2_attention_scale_1.7	10.81
         | 
| 847 | 
            +
            ngram_lm_scale_1.3_attention_scale_2.0	10.81
         | 
| 848 | 
            +
            ngram_lm_scale_1.0_attention_scale_1.1	10.82
         | 
| 849 | 
            +
            ngram_lm_scale_0.5_attention_scale_0.05	10.83
         | 
| 850 | 
            +
            ngram_lm_scale_1.1_attention_scale_1.3	10.83
         | 
| 851 | 
            +
            ngram_lm_scale_1.3_attention_scale_1.9	10.83
         | 
| 852 | 
            +
            ngram_lm_scale_1.5_attention_scale_2.5	10.84
         | 
| 853 | 
            +
            ngram_lm_scale_2.3_attention_scale_5.0	10.84
         | 
| 854 | 
            +
            ngram_lm_scale_1.0_attention_scale_1.0	10.85
         | 
| 855 | 
            +
            ngram_lm_scale_1.2_attention_scale_1.5	10.85
         | 
| 856 | 
            +
            ngram_lm_scale_2.0_attention_scale_4.0	10.85
         | 
| 857 | 
            +
            ngram_lm_scale_1.1_attention_scale_1.2	10.86
         | 
| 858 | 
            +
            ngram_lm_scale_1.7_attention_scale_3.0	10.86
         | 
| 859 | 
            +
            ngram_lm_scale_0.5_attention_scale_0.01	10.87
         | 
| 860 | 
            +
            ngram_lm_scale_1.5_attention_scale_2.3	10.87
         | 
| 861 | 
            +
            ngram_lm_scale_0.7_attention_scale_0.3	10.88
         | 
| 862 | 
            +
            ngram_lm_scale_0.9_attention_scale_0.7	10.88
         | 
| 863 | 
            +
            ngram_lm_scale_1.3_attention_scale_1.7	10.88
         | 
| 864 | 
            +
            ngram_lm_scale_1.0_attention_scale_0.9	10.89
         | 
| 865 | 
            +
            ngram_lm_scale_1.5_attention_scale_2.2	10.89
         | 
| 866 | 
            +
            ngram_lm_scale_2.1_attention_scale_4.0	10.89
         | 
| 867 | 
            +
            ngram_lm_scale_1.1_attention_scale_1.1	10.91
         | 
| 868 | 
            +
            ngram_lm_scale_0.6_attention_scale_0.1	10.92
         | 
| 869 | 
            +
            ngram_lm_scale_0.9_attention_scale_0.6	10.92
         | 
| 870 | 
            +
            ngram_lm_scale_1.5_attention_scale_2.1	10.92
         | 
| 871 | 
            +
            ngram_lm_scale_1.2_attention_scale_1.3	10.93
         | 
| 872 | 
            +
            ngram_lm_scale_2.5_attention_scale_5.0	10.93
         | 
| 873 | 
            +
            ngram_lm_scale_0.6_attention_scale_0.08	10.94
         | 
| 874 | 
            +
            ngram_lm_scale_2.2_attention_scale_4.0	10.94
         | 
| 875 | 
            +
            ngram_lm_scale_1.1_attention_scale_1.0	10.95
         | 
| 876 | 
            +
            ngram_lm_scale_1.3_attention_scale_1.5	10.95
         | 
| 877 | 
            +
            ngram_lm_scale_1.5_attention_scale_2.0	10.96
         | 
| 878 | 
            +
            ngram_lm_scale_1.2_attention_scale_1.2	10.97
         | 
| 879 | 
            +
            ngram_lm_scale_1.7_attention_scale_2.5	10.97
         | 
| 880 | 
            +
            ngram_lm_scale_0.6_attention_scale_0.05	10.98
         | 
| 881 | 
            +
            ngram_lm_scale_1.9_attention_scale_3.0	10.98
         | 
| 882 | 
            +
            ngram_lm_scale_1.0_attention_scale_0.7	10.99
         | 
| 883 | 
            +
            ngram_lm_scale_1.5_attention_scale_1.9	10.99
         | 
| 884 | 
            +
            ngram_lm_scale_2.3_attention_scale_4.0	10.99
         | 
| 885 | 
            +
            ngram_lm_scale_0.9_attention_scale_0.5	11.0
         | 
| 886 | 
            +
            ngram_lm_scale_1.1_attention_scale_0.9	11.0
         | 
| 887 | 
            +
            ngram_lm_scale_0.6_attention_scale_0.01	11.02
         | 
| 888 | 
            +
            ngram_lm_scale_1.2_attention_scale_1.1	11.02
         | 
| 889 | 
            +
            ngram_lm_scale_1.7_attention_scale_2.3	11.03
         | 
| 890 | 
            +
            ngram_lm_scale_1.3_attention_scale_1.3	11.05
         | 
| 891 | 
            +
            ngram_lm_scale_2.0_attention_scale_3.0	11.05
         | 
| 892 | 
            +
            ngram_lm_scale_1.7_attention_scale_2.2	11.07
         | 
| 893 | 
            +
            ngram_lm_scale_1.0_attention_scale_0.6	11.08
         | 
| 894 | 
            +
            ngram_lm_scale_1.5_attention_scale_1.7	11.08
         | 
| 895 | 
            +
            ngram_lm_scale_1.2_attention_scale_1.0	11.09
         | 
| 896 | 
            +
            ngram_lm_scale_0.7_attention_scale_0.1	11.1
         | 
| 897 | 
            +
            ngram_lm_scale_1.3_attention_scale_1.2	11.1
         | 
| 898 | 
            +
            ngram_lm_scale_1.7_attention_scale_2.1	11.11
         | 
| 899 | 
            +
            ngram_lm_scale_2.1_attention_scale_3.0	11.12
         | 
| 900 | 
            +
            ngram_lm_scale_2.5_attention_scale_4.0	11.12
         | 
| 901 | 
            +
            ngram_lm_scale_0.7_attention_scale_0.08	11.13
         | 
| 902 | 
            +
            ngram_lm_scale_1.9_attention_scale_2.5	11.13
         | 
| 903 | 
            +
            ngram_lm_scale_1.7_attention_scale_2.0	11.14
         | 
| 904 | 
            +
            ngram_lm_scale_1.2_attention_scale_0.9	11.16
         | 
| 905 | 
            +
            ngram_lm_scale_1.1_attention_scale_0.7	11.17
         | 
| 906 | 
            +
            ngram_lm_scale_1.3_attention_scale_1.1	11.17
         | 
| 907 | 
            +
            ngram_lm_scale_3.0_attention_scale_5.0	11.17
         | 
| 908 | 
            +
            ngram_lm_scale_0.7_attention_scale_0.05	11.18
         | 
| 909 | 
            +
            ngram_lm_scale_1.5_attention_scale_1.5	11.18
         | 
| 910 | 
            +
            ngram_lm_scale_1.0_attention_scale_0.5	11.19
         | 
| 911 | 
            +
            ngram_lm_scale_1.7_attention_scale_1.9	11.2
         | 
| 912 | 
            +
            ngram_lm_scale_2.2_attention_scale_3.0	11.21
         | 
| 913 | 
            +
            ngram_lm_scale_1.9_attention_scale_2.3	11.22
         | 
| 914 | 
            +
            ngram_lm_scale_2.0_attention_scale_2.5	11.23
         | 
| 915 | 
            +
            ngram_lm_scale_0.9_attention_scale_0.3	11.25
         | 
| 916 | 
            +
            ngram_lm_scale_1.3_attention_scale_1.0	11.26
         | 
| 917 | 
            +
            ngram_lm_scale_0.7_attention_scale_0.01	11.27
         | 
| 918 | 
            +
            ngram_lm_scale_1.9_attention_scale_2.2	11.27
         | 
| 919 | 
            +
            ngram_lm_scale_1.1_attention_scale_0.6	11.29
         | 
| 920 | 
            +
            ngram_lm_scale_2.3_attention_scale_3.0	11.31
         | 
| 921 | 
            +
            ngram_lm_scale_1.7_attention_scale_1.7	11.33
         | 
| 922 | 
            +
            ngram_lm_scale_1.5_attention_scale_1.3	11.34
         | 
| 923 | 
            +
            ngram_lm_scale_1.9_attention_scale_2.1	11.34
         | 
| 924 | 
            +
            ngram_lm_scale_2.0_attention_scale_2.3	11.34
         | 
| 925 | 
            +
            ngram_lm_scale_2.1_attention_scale_2.5	11.35
         | 
| 926 | 
            +
            ngram_lm_scale_1.3_attention_scale_0.9	11.36
         | 
| 927 | 
            +
            ngram_lm_scale_1.2_attention_scale_0.7	11.39
         | 
| 928 | 
            +
            ngram_lm_scale_1.9_attention_scale_2.0	11.4
         | 
| 929 | 
            +
            ngram_lm_scale_2.0_attention_scale_2.2	11.4
         | 
| 930 | 
            +
            ngram_lm_scale_1.5_attention_scale_1.2	11.43
         | 
| 931 | 
            +
            ngram_lm_scale_1.1_attention_scale_0.5	11.44
         | 
| 932 | 
            +
            ngram_lm_scale_2.0_attention_scale_2.1	11.47
         | 
| 933 | 
            +
            ngram_lm_scale_2.1_attention_scale_2.3	11.47
         | 
| 934 | 
            +
            ngram_lm_scale_2.2_attention_scale_2.5	11.47
         | 
| 935 | 
            +
            ngram_lm_scale_1.9_attention_scale_1.9	11.48
         | 
| 936 | 
            +
            ngram_lm_scale_1.7_attention_scale_1.5	11.5
         | 
| 937 | 
            +
            ngram_lm_scale_2.5_attention_scale_3.0	11.51
         | 
| 938 | 
            +
            ngram_lm_scale_3.0_attention_scale_4.0	11.51
         | 
| 939 | 
            +
            ngram_lm_scale_1.0_attention_scale_0.3	11.53
         | 
| 940 | 
            +
            ngram_lm_scale_1.2_attention_scale_0.6	11.53
         | 
| 941 | 
            +
            ngram_lm_scale_1.5_attention_scale_1.1	11.54
         | 
| 942 | 
            +
            ngram_lm_scale_2.1_attention_scale_2.2	11.54
         | 
| 943 | 
            +
            ngram_lm_scale_2.0_attention_scale_2.0	11.55
         | 
| 944 | 
            +
            ngram_lm_scale_2.3_attention_scale_2.5	11.59
         | 
| 945 | 
            +
            ngram_lm_scale_2.2_attention_scale_2.3	11.61
         | 
| 946 | 
            +
            ngram_lm_scale_2.1_attention_scale_2.1	11.62
         | 
| 947 | 
            +
            ngram_lm_scale_1.3_attention_scale_0.7	11.63
         | 
| 948 | 
            +
            ngram_lm_scale_2.0_attention_scale_1.9	11.63
         | 
| 949 | 
            +
            ngram_lm_scale_1.9_attention_scale_1.7	11.66
         | 
| 950 | 
            +
            ngram_lm_scale_1.5_attention_scale_1.0	11.67
         | 
| 951 | 
            +
            ngram_lm_scale_2.2_attention_scale_2.2	11.69
         | 
| 952 | 
            +
            ngram_lm_scale_0.9_attention_scale_0.1	11.7
         | 
| 953 | 
            +
            ngram_lm_scale_2.1_attention_scale_2.0	11.71
         | 
| 954 | 
            +
            ngram_lm_scale_1.2_attention_scale_0.5	11.72
         | 
| 955 | 
            +
            ngram_lm_scale_1.7_attention_scale_1.3	11.72
         | 
| 956 | 
            +
            ngram_lm_scale_2.3_attention_scale_2.3	11.75
         | 
| 957 | 
            +
            ngram_lm_scale_0.9_attention_scale_0.08	11.77
         | 
| 958 | 
            +
            ngram_lm_scale_2.2_attention_scale_2.1	11.78
         | 
| 959 | 
            +
            ngram_lm_scale_2.1_attention_scale_1.9	11.82
         | 
| 960 | 
            +
            ngram_lm_scale_1.3_attention_scale_0.6	11.83
         | 
| 961 | 
            +
            ngram_lm_scale_1.5_attention_scale_0.9	11.85
         | 
| 962 | 
            +
            ngram_lm_scale_2.0_attention_scale_1.7	11.85
         | 
| 963 | 
            +
            ngram_lm_scale_2.3_attention_scale_2.2	11.86
         | 
| 964 | 
            +
            ngram_lm_scale_0.9_attention_scale_0.05	11.87
         | 
| 965 | 
            +
            ngram_lm_scale_1.1_attention_scale_0.3	11.87
         | 
| 966 | 
            +
            ngram_lm_scale_1.7_attention_scale_1.2	11.88
         | 
| 967 | 
            +
            ngram_lm_scale_1.9_attention_scale_1.5	11.9
         | 
| 968 | 
            +
            ngram_lm_scale_2.2_attention_scale_2.0	11.9
         | 
| 969 | 
            +
            ngram_lm_scale_2.5_attention_scale_2.5	11.9
         | 
| 970 | 
            +
            ngram_lm_scale_4.0_attention_scale_5.0	11.93
         | 
| 971 | 
            +
            ngram_lm_scale_2.3_attention_scale_2.1	11.97
         | 
| 972 | 
            +
            ngram_lm_scale_0.9_attention_scale_0.01	12.0
         | 
| 973 | 
            +
            ngram_lm_scale_2.2_attention_scale_1.9	12.02
         | 
| 974 | 
            +
            ngram_lm_scale_1.7_attention_scale_1.1	12.05
         | 
| 975 | 
            +
            ngram_lm_scale_1.3_attention_scale_0.5	12.07
         | 
| 976 | 
            +
            ngram_lm_scale_2.1_attention_scale_1.7	12.07
         | 
| 977 | 
            +
            ngram_lm_scale_2.3_attention_scale_2.0	12.09
         | 
| 978 | 
            +
            ngram_lm_scale_1.0_attention_scale_0.1	12.11
         | 
| 979 | 
            +
            ngram_lm_scale_2.5_attention_scale_2.3	12.11
         | 
| 980 | 
            +
            ngram_lm_scale_2.0_attention_scale_1.5	12.14
         | 
| 981 | 
            +
            ngram_lm_scale_1.0_attention_scale_0.08	12.19
         | 
| 982 | 
            +
            ngram_lm_scale_3.0_attention_scale_3.0	12.19
         | 
| 983 | 
            +
            ngram_lm_scale_1.9_attention_scale_1.3	12.22
         | 
| 984 | 
            +
            ngram_lm_scale_1.7_attention_scale_1.0	12.23
         | 
| 985 | 
            +
            ngram_lm_scale_2.3_attention_scale_1.9	12.23
         | 
| 986 | 
            +
            ngram_lm_scale_2.5_attention_scale_2.2	12.23
         | 
| 987 | 
            +
            ngram_lm_scale_1.5_attention_scale_0.7	12.27
         | 
| 988 | 
            +
            ngram_lm_scale_1.2_attention_scale_0.3	12.28
         | 
| 989 | 
            +
            ngram_lm_scale_2.2_attention_scale_1.7	12.3
         | 
| 990 | 
            +
            ngram_lm_scale_1.0_attention_scale_0.05	12.32
         | 
| 991 | 
            +
            ngram_lm_scale_2.5_attention_scale_2.1	12.37
         | 
| 992 | 
            +
            ngram_lm_scale_2.1_attention_scale_1.5	12.39
         | 
| 993 | 
            +
            ngram_lm_scale_1.9_attention_scale_1.2	12.41
         | 
| 994 | 
            +
            ngram_lm_scale_1.7_attention_scale_0.9	12.46
         | 
| 995 | 
            +
            ngram_lm_scale_1.0_attention_scale_0.01	12.49
         | 
| 996 | 
            +
            ngram_lm_scale_2.0_attention_scale_1.3	12.5
         | 
| 997 | 
            +
            ngram_lm_scale_2.5_attention_scale_2.0	12.51
         | 
| 998 | 
            +
            ngram_lm_scale_2.3_attention_scale_1.7	12.54
         | 
| 999 | 
            +
            ngram_lm_scale_1.5_attention_scale_0.6	12.55
         | 
| 1000 | 
            +
            ngram_lm_scale_1.1_attention_scale_0.1	12.58
         | 
| 1001 | 
            +
            ngram_lm_scale_1.9_attention_scale_1.1	12.62
         | 
| 1002 | 
            +
            ngram_lm_scale_2.2_attention_scale_1.5	12.64
         | 
| 1003 | 
            +
            ngram_lm_scale_1.1_attention_scale_0.08	12.67
         | 
| 1004 | 
            +
            ngram_lm_scale_2.5_attention_scale_1.9	12.67
         | 
| 1005 | 
            +
            ngram_lm_scale_4.0_attention_scale_4.0	12.67
         | 
| 1006 | 
            +
            ngram_lm_scale_1.3_attention_scale_0.3	12.71
         | 
| 1007 | 
            +
            ngram_lm_scale_2.0_attention_scale_1.2	12.71
         | 
| 1008 | 
            +
            ngram_lm_scale_2.1_attention_scale_1.3	12.78
         | 
| 1009 | 
            +
            ngram_lm_scale_3.0_attention_scale_2.5	12.8
         | 
| 1010 | 
            +
            ngram_lm_scale_1.1_attention_scale_0.05	12.81
         | 
| 1011 | 
            +
            ngram_lm_scale_1.9_attention_scale_1.0	12.85
         | 
| 1012 | 
            +
            ngram_lm_scale_1.5_attention_scale_0.5	12.86
         | 
| 1013 | 
            +
            ngram_lm_scale_2.3_attention_scale_1.5	12.91
         | 
| 1014 | 
            +
            ngram_lm_scale_2.0_attention_scale_1.1	12.92
         | 
| 1015 | 
            +
            ngram_lm_scale_1.7_attention_scale_0.7	12.99
         | 
| 1016 | 
            +
            ngram_lm_scale_2.1_attention_scale_1.2	12.99
         | 
| 1017 | 
            +
            ngram_lm_scale_5.0_attention_scale_5.0	13.01
         | 
| 1018 | 
            +
            ngram_lm_scale_1.1_attention_scale_0.01	13.02
         | 
| 1019 | 
            +
            ngram_lm_scale_2.5_attention_scale_1.7	13.02
         | 
| 1020 | 
            +
            ngram_lm_scale_2.2_attention_scale_1.3	13.05
         | 
| 1021 | 
            +
            ngram_lm_scale_3.0_attention_scale_2.3	13.09
         | 
| 1022 | 
            +
            ngram_lm_scale_1.2_attention_scale_0.1	13.1
         | 
| 1023 | 
            +
            ngram_lm_scale_1.9_attention_scale_0.9	13.11
         | 
| 1024 | 
            +
            ngram_lm_scale_2.0_attention_scale_1.0	13.17
         | 
| 1025 | 
            +
            ngram_lm_scale_1.2_attention_scale_0.08	13.2
         | 
| 1026 | 
            +
            ngram_lm_scale_2.1_attention_scale_1.1	13.22
         | 
| 1027 | 
            +
            ngram_lm_scale_3.0_attention_scale_2.2	13.24
         | 
| 1028 | 
            +
            ngram_lm_scale_2.2_attention_scale_1.2	13.28
         | 
| 1029 | 
            +
            ngram_lm_scale_1.7_attention_scale_0.6	13.33
         | 
| 1030 | 
            +
            ngram_lm_scale_2.3_attention_scale_1.3	13.34
         | 
| 1031 | 
            +
            ngram_lm_scale_1.2_attention_scale_0.05	13.36
         | 
| 1032 | 
            +
            ngram_lm_scale_3.0_attention_scale_2.1	13.42
         | 
| 1033 | 
            +
            ngram_lm_scale_2.5_attention_scale_1.5	13.43
         | 
| 1034 | 
            +
            ngram_lm_scale_2.0_attention_scale_0.9	13.48
         | 
| 1035 | 
            +
            ngram_lm_scale_2.1_attention_scale_1.0	13.51
         | 
| 1036 | 
            +
            ngram_lm_scale_2.2_attention_scale_1.1	13.56
         | 
| 1037 | 
            +
            ngram_lm_scale_1.2_attention_scale_0.01	13.6
         | 
| 1038 | 
            +
            ngram_lm_scale_2.3_attention_scale_1.2	13.6
         | 
| 1039 | 
            +
            ngram_lm_scale_3.0_attention_scale_2.0	13.62
         | 
| 1040 | 
            +
            ngram_lm_scale_1.3_attention_scale_0.1	13.65
         | 
| 1041 | 
            +
            ngram_lm_scale_1.5_attention_scale_0.3	13.68
         | 
| 1042 | 
            +
            ngram_lm_scale_1.7_attention_scale_0.5	13.72
         | 
| 1043 | 
            +
            ngram_lm_scale_1.3_attention_scale_0.08	13.76
         | 
| 1044 | 
            +
            ngram_lm_scale_1.9_attention_scale_0.7	13.78
         | 
| 1045 | 
            +
            ngram_lm_scale_3.0_attention_scale_1.9	13.81
         | 
| 1046 | 
            +
            ngram_lm_scale_2.1_attention_scale_0.9	13.82
         | 
| 1047 | 
            +
            ngram_lm_scale_2.2_attention_scale_1.0	13.85
         | 
| 1048 | 
            +
            ngram_lm_scale_4.0_attention_scale_3.0	13.85
         | 
| 1049 | 
            +
            ngram_lm_scale_2.3_attention_scale_1.1	13.89
         | 
| 1050 | 
            +
            ngram_lm_scale_1.3_attention_scale_0.05	13.94
         | 
| 1051 | 
            +
            ngram_lm_scale_2.5_attention_scale_1.3	13.94
         | 
| 1052 | 
            +
            ngram_lm_scale_5.0_attention_scale_4.0	13.97
         | 
| 1053 | 
            +
            ngram_lm_scale_1.9_attention_scale_0.6	14.15
         | 
| 1054 | 
            +
            ngram_lm_scale_2.0_attention_scale_0.7	14.16
         | 
| 1055 | 
            +
            ngram_lm_scale_2.2_attention_scale_0.9	14.17
         | 
| 1056 | 
            +
            ngram_lm_scale_2.3_attention_scale_1.0	14.19
         | 
| 1057 | 
            +
            ngram_lm_scale_1.3_attention_scale_0.01	14.2
         | 
| 1058 | 
            +
            ngram_lm_scale_2.5_attention_scale_1.2	14.2
         | 
| 1059 | 
            +
            ngram_lm_scale_3.0_attention_scale_1.7	14.26
         | 
| 1060 | 
            +
            ngram_lm_scale_2.5_attention_scale_1.1	14.48
         | 
| 1061 | 
            +
            ngram_lm_scale_2.3_attention_scale_0.9	14.5
         | 
| 1062 | 
            +
            ngram_lm_scale_2.1_attention_scale_0.7	14.53
         | 
| 1063 | 
            +
            ngram_lm_scale_2.0_attention_scale_0.6	14.54
         | 
| 1064 | 
            +
            ngram_lm_scale_1.9_attention_scale_0.5	14.57
         | 
| 1065 | 
            +
            ngram_lm_scale_4.0_attention_scale_2.5	14.63
         | 
| 1066 | 
            +
            ngram_lm_scale_1.7_attention_scale_0.3	14.64
         | 
| 1067 | 
            +
            ngram_lm_scale_3.0_attention_scale_1.5	14.71
         | 
| 1068 | 
            +
            ngram_lm_scale_1.5_attention_scale_0.1	14.75
         | 
| 1069 | 
            +
            ngram_lm_scale_2.5_attention_scale_1.0	14.79
         | 
| 1070 | 
            +
            ngram_lm_scale_2.2_attention_scale_0.7	14.86
         | 
| 1071 | 
            +
            ngram_lm_scale_1.5_attention_scale_0.08	14.87
         | 
| 1072 | 
            +
            ngram_lm_scale_2.1_attention_scale_0.6	14.91
         | 
| 1073 | 
            +
            ngram_lm_scale_2.0_attention_scale_0.5	14.95
         | 
| 1074 | 
            +
            ngram_lm_scale_4.0_attention_scale_2.3	14.98
         | 
| 1075 | 
            +
            ngram_lm_scale_1.5_attention_scale_0.05	15.05
         | 
| 1076 | 
            +
            ngram_lm_scale_2.5_attention_scale_0.9	15.12
         | 
| 1077 | 
            +
            ngram_lm_scale_4.0_attention_scale_2.2	15.17
         | 
| 1078 | 
            +
            ngram_lm_scale_2.3_attention_scale_0.7	15.21
         | 
| 1079 | 
            +
            ngram_lm_scale_3.0_attention_scale_1.3	15.22
         | 
| 1080 | 
            +
            ngram_lm_scale_2.2_attention_scale_0.6	15.27
         | 
| 1081 | 
            +
            ngram_lm_scale_1.5_attention_scale_0.01	15.3
         | 
| 1082 | 
            +
            ngram_lm_scale_5.0_attention_scale_3.0	15.32
         | 
| 1083 | 
            +
            ngram_lm_scale_2.1_attention_scale_0.5	15.33
         | 
| 1084 | 
            +
            ngram_lm_scale_4.0_attention_scale_2.1	15.37
         | 
| 1085 | 
            +
            ngram_lm_scale_1.9_attention_scale_0.3	15.5
         | 
| 1086 | 
            +
            ngram_lm_scale_3.0_attention_scale_1.2	15.51
         | 
| 1087 | 
            +
            ngram_lm_scale_4.0_attention_scale_2.0	15.57
         | 
| 1088 | 
            +
            ngram_lm_scale_2.3_attention_scale_0.6	15.61
         | 
| 1089 | 
            +
            ngram_lm_scale_2.2_attention_scale_0.5	15.68
         | 
| 1090 | 
            +
            ngram_lm_scale_1.7_attention_scale_0.1	15.72
         | 
| 1091 | 
            +
            ngram_lm_scale_4.0_attention_scale_1.9	15.79
         | 
| 1092 | 
            +
            ngram_lm_scale_3.0_attention_scale_1.1	15.82
         | 
| 1093 | 
            +
            ngram_lm_scale_1.7_attention_scale_0.08	15.83
         | 
| 1094 | 
            +
            ngram_lm_scale_2.5_attention_scale_0.7	15.85
         | 
| 1095 | 
            +
            ngram_lm_scale_2.0_attention_scale_0.3	15.87
         | 
| 1096 | 
            +
            ngram_lm_scale_2.3_attention_scale_0.5	16.0
         | 
| 1097 | 
            +
            ngram_lm_scale_1.7_attention_scale_0.05	16.01
         | 
| 1098 | 
            +
            ngram_lm_scale_3.0_attention_scale_1.0	16.11
         | 
| 1099 | 
            +
            ngram_lm_scale_5.0_attention_scale_2.5	16.12
         | 
| 1100 | 
            +
            ngram_lm_scale_2.5_attention_scale_0.6	16.19
         | 
| 1101 | 
            +
            ngram_lm_scale_2.1_attention_scale_0.3	16.2
         | 
| 1102 | 
            +
            ngram_lm_scale_4.0_attention_scale_1.7	16.22
         | 
| 1103 | 
            +
            ngram_lm_scale_1.7_attention_scale_0.01	16.23
         | 
| 1104 | 
            +
            ngram_lm_scale_3.0_attention_scale_0.9	16.4
         | 
| 1105 | 
            +
            ngram_lm_scale_5.0_attention_scale_2.3	16.44
         | 
| 1106 | 
            +
            ngram_lm_scale_1.9_attention_scale_0.1	16.5
         | 
| 1107 | 
            +
            ngram_lm_scale_2.2_attention_scale_0.3	16.53
         | 
| 1108 | 
            +
            ngram_lm_scale_2.5_attention_scale_0.5	16.54
         | 
| 1109 | 
            +
            ngram_lm_scale_1.9_attention_scale_0.08	16.6
         | 
| 1110 | 
            +
            ngram_lm_scale_5.0_attention_scale_2.2	16.6
         | 
| 1111 | 
            +
            ngram_lm_scale_4.0_attention_scale_1.5	16.63
         | 
| 1112 | 
            +
            ngram_lm_scale_1.9_attention_scale_0.05	16.74
         | 
| 1113 | 
            +
            ngram_lm_scale_5.0_attention_scale_2.1	16.77
         | 
| 1114 | 
            +
            ngram_lm_scale_2.3_attention_scale_0.3	16.81
         | 
| 1115 | 
            +
            ngram_lm_scale_2.0_attention_scale_0.1	16.83
         | 
| 1116 | 
            +
            ngram_lm_scale_2.0_attention_scale_0.08	16.92
         | 
| 1117 | 
            +
            ngram_lm_scale_5.0_attention_scale_2.0	16.94
         | 
| 1118 | 
            +
            ngram_lm_scale_1.9_attention_scale_0.01	16.95
         | 
| 1119 | 
            +
            ngram_lm_scale_3.0_attention_scale_0.7	16.96
         | 
| 1120 | 
            +
            ngram_lm_scale_2.0_attention_scale_0.05	17.05
         | 
| 1121 | 
            +
            ngram_lm_scale_4.0_attention_scale_1.3	17.05
         | 
| 1122 | 
            +
            ngram_lm_scale_2.1_attention_scale_0.1	17.11
         | 
| 1123 | 
            +
            ngram_lm_scale_5.0_attention_scale_1.9	17.11
         | 
| 1124 | 
            +
            ngram_lm_scale_2.1_attention_scale_0.08	17.21
         | 
| 1125 | 
            +
            ngram_lm_scale_2.0_attention_scale_0.01	17.24
         | 
| 1126 | 
            +
            ngram_lm_scale_3.0_attention_scale_0.6	17.26
         | 
| 1127 | 
            +
            ngram_lm_scale_4.0_attention_scale_1.2	17.27
         | 
| 1128 | 
            +
            ngram_lm_scale_2.5_attention_scale_0.3	17.28
         | 
| 1129 | 
            +
            ngram_lm_scale_2.1_attention_scale_0.05	17.34
         | 
| 1130 | 
            +
            ngram_lm_scale_2.2_attention_scale_0.1	17.38
         | 
| 1131 | 
            +
            ngram_lm_scale_5.0_attention_scale_1.7	17.44
         | 
| 1132 | 
            +
            ngram_lm_scale_2.2_attention_scale_0.08	17.46
         | 
| 1133 | 
            +
            ngram_lm_scale_4.0_attention_scale_1.1	17.5
         | 
| 1134 | 
            +
            ngram_lm_scale_2.1_attention_scale_0.01	17.52
         | 
| 1135 | 
            +
            ngram_lm_scale_3.0_attention_scale_0.5	17.57
         | 
| 1136 | 
            +
            ngram_lm_scale_2.2_attention_scale_0.05	17.59
         | 
| 1137 | 
            +
            ngram_lm_scale_2.3_attention_scale_0.1	17.62
         | 
| 1138 | 
            +
            ngram_lm_scale_2.3_attention_scale_0.08	17.7
         | 
| 1139 | 
            +
            ngram_lm_scale_4.0_attention_scale_1.0	17.72
         | 
| 1140 | 
            +
            ngram_lm_scale_2.2_attention_scale_0.01	17.76
         | 
| 1141 | 
            +
            ngram_lm_scale_5.0_attention_scale_1.5	17.8
         | 
| 1142 | 
            +
            ngram_lm_scale_2.3_attention_scale_0.05	17.82
         | 
| 1143 | 
            +
            ngram_lm_scale_4.0_attention_scale_0.9	17.94
         | 
| 1144 | 
            +
            ngram_lm_scale_2.3_attention_scale_0.01	17.98
         | 
| 1145 | 
            +
            ngram_lm_scale_2.5_attention_scale_0.1	18.03
         | 
| 1146 | 
            +
            ngram_lm_scale_2.5_attention_scale_0.08	18.1
         | 
| 1147 | 
            +
            ngram_lm_scale_5.0_attention_scale_1.3	18.12
         | 
| 1148 | 
            +
            ngram_lm_scale_3.0_attention_scale_0.3	18.17
         | 
| 1149 | 
            +
            ngram_lm_scale_2.5_attention_scale_0.05	18.2
         | 
| 1150 | 
            +
            ngram_lm_scale_5.0_attention_scale_1.2	18.29
         | 
| 1151 | 
            +
            ngram_lm_scale_2.5_attention_scale_0.01	18.33
         | 
| 1152 | 
            +
            ngram_lm_scale_4.0_attention_scale_0.7	18.36
         | 
| 1153 | 
            +
            ngram_lm_scale_5.0_attention_scale_1.1	18.48
         | 
| 1154 | 
            +
            ngram_lm_scale_4.0_attention_scale_0.6	18.58
         | 
| 1155 | 
            +
            ngram_lm_scale_5.0_attention_scale_1.0	18.65
         | 
| 1156 | 
            +
            ngram_lm_scale_3.0_attention_scale_0.1	18.75
         | 
| 1157 | 
            +
            ngram_lm_scale_4.0_attention_scale_0.5	18.79
         | 
| 1158 | 
            +
            ngram_lm_scale_3.0_attention_scale_0.08	18.81
         | 
| 1159 | 
            +
            ngram_lm_scale_5.0_attention_scale_0.9	18.81
         | 
| 1160 | 
            +
            ngram_lm_scale_3.0_attention_scale_0.05	18.89
         | 
| 1161 | 
            +
            ngram_lm_scale_3.0_attention_scale_0.01	18.99
         | 
| 1162 | 
            +
            ngram_lm_scale_5.0_attention_scale_0.7	19.11
         | 
| 1163 | 
            +
            ngram_lm_scale_4.0_attention_scale_0.3	19.18
         | 
| 1164 | 
            +
            ngram_lm_scale_5.0_attention_scale_0.6	19.25
         | 
| 1165 | 
            +
            ngram_lm_scale_5.0_attention_scale_0.5	19.41
         | 
| 1166 | 
            +
            ngram_lm_scale_4.0_attention_scale_0.1	19.57
         | 
| 1167 | 
            +
            ngram_lm_scale_4.0_attention_scale_0.08	19.61
         | 
| 1168 | 
            +
            ngram_lm_scale_4.0_attention_scale_0.05	19.67
         | 
| 1169 | 
            +
            ngram_lm_scale_5.0_attention_scale_0.3	19.71
         | 
| 1170 | 
            +
            ngram_lm_scale_4.0_attention_scale_0.01	19.73
         | 
| 1171 | 
            +
            ngram_lm_scale_5.0_attention_scale_0.1	19.99
         | 
| 1172 | 
            +
            ngram_lm_scale_5.0_attention_scale_0.08	20.01
         | 
| 1173 | 
            +
            ngram_lm_scale_5.0_attention_scale_0.05	20.05
         | 
| 1174 | 
            +
            ngram_lm_scale_5.0_attention_scale_0.01	20.11
         | 
| 1175 | 
            +
             | 
| 1176 | 
            +
            2022-04-09 04:57:33,455 INFO [decode_test.py:730] Done!
         | 
