Upload log/log-decode-2022-04-09-01-40-41
Browse files- log/log-decode-2022-04-09-01-40-41 +1176 -0
log/log-decode-2022-04-09-01-40-41
ADDED
|
@@ -0,0 +1,1176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2022-04-09 01:40:41,909 INFO [decode_test.py:583] Decoding started
|
| 2 |
+
2022-04-09 01:40:41,910 INFO [decode_test.py:584] {'subsampling_factor': 4, 'vgg_frontend': False, 'use_feat_batchnorm': True, 'feature_dim': 80, 'nhead': 8, 'attention_dim': 512, 'num_decoder_layers': 6, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'env_info': {'k2-version': '1.14', 'k2-build-type': 'Release', 'k2-with-cuda': True, 'k2-git-sha1': '6833270cb228aba7bf9681fccd41e2b52f7d984c', 'k2-git-date': 'Wed Mar 16 11:16:05 2022', 'lhotse-version': '1.0.0.dev+git.d917411.clean', 'torch-cuda-available': True, 'torch-cuda-version': '11.1', 'python-version': '3.7', 'icefall-git-branch': 'gigaspeech_recipe', 'icefall-git-sha1': 'c3993a5-dirty', 'icefall-git-date': 'Mon Mar 21 13:49:39 2022', 'icefall-path': '/userhome/user/guanbo/icefall_decode', 'k2-path': '/opt/conda/lib/python3.7/site-packages/k2-1.14.dev20220408+cuda11.1.torch1.10.0-py3.7-linux-x86_64.egg/k2/__init__.py', 'lhotse-path': '/userhome/user/guanbo/lhotse/lhotse/__init__.py', 'hostname': 'c8861f400b70d011ec0a3ee069db84328338-chenx8564-0', 'IP address': '10.9.150.55'}, 'epoch': 18, 'avg': 6, 'method': 'attention-decoder', 'num_paths': 1000, 'nbest_scale': 0.5, 'exp_dir': PosixPath('conformer_ctc/exp_500_8_2'), 'lang_dir': PosixPath('data/lang_bpe_500'), 'lm_dir': PosixPath('data/lm'), 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 20, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 1, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'subset': 'XL', 'lazy_load': True, 'small_dev': False}
|
| 3 |
+
2022-04-09 01:40:42,371 INFO [lexicon.py:176] Loading pre-compiled data/lang_bpe_500/Linv.pt
|
| 4 |
+
2022-04-09 01:40:42,473 INFO [decode_test.py:594] device: cuda:0
|
| 5 |
+
2022-04-09 01:40:46,249 INFO [decode_test.py:656] Loading pre-compiled G_4_gram.pt
|
| 6 |
+
2022-04-09 01:40:47,406 INFO [decode_test.py:692] averaging ['conformer_ctc/exp_500_8_2/epoch-13.pt', 'conformer_ctc/exp_500_8_2/epoch-14.pt', 'conformer_ctc/exp_500_8_2/epoch-15.pt', 'conformer_ctc/exp_500_8_2/epoch-16.pt', 'conformer_ctc/exp_500_8_2/epoch-17.pt', 'conformer_ctc/exp_500_8_2/epoch-18.pt']
|
| 7 |
+
2022-04-09 01:40:53,065 INFO [decode_test.py:699] Number of model parameters: 109226120
|
| 8 |
+
2022-04-09 01:40:53,065 INFO [asr_datamodule.py:381] About to get test cuts
|
| 9 |
+
2022-04-09 01:40:56,361 INFO [decode_test.py:497] batch 0/?, cuts processed until now is 3
|
| 10 |
+
2022-04-09 01:41:24,462 INFO [decode.py:736] Caught exception:
|
| 11 |
+
CUDA out of memory. Tried to allocate 5.93 GiB (GPU 0; 31.75 GiB total capacity; 27.23 GiB already allocated; 1.90 GiB free; 28.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 12 |
+
|
| 13 |
+
2022-04-09 01:41:24,462 INFO [decode.py:743] num_arcs before pruning: 324363
|
| 14 |
+
2022-04-09 01:41:24,462 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 15 |
+
2022-04-09 01:41:24,473 INFO [decode.py:757] num_arcs after pruning: 7174
|
| 16 |
+
2022-04-09 01:41:40,284 INFO [decode.py:736] Caught exception:
|
| 17 |
+
CUDA out of memory. Tried to allocate 4.67 GiB (GPU 0; 31.75 GiB total capacity; 25.69 GiB already allocated; 2.92 GiB free; 27.47 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 18 |
+
|
| 19 |
+
2022-04-09 01:41:40,285 INFO [decode.py:743] num_arcs before pruning: 368362
|
| 20 |
+
2022-04-09 01:41:40,285 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 21 |
+
2022-04-09 01:41:40,305 INFO [decode.py:757] num_arcs after pruning: 8521
|
| 22 |
+
2022-04-09 01:42:38,727 INFO [decode.py:736] Caught exception:
|
| 23 |
+
CUDA out of memory. Tried to allocate 2.18 GiB (GPU 0; 31.75 GiB total capacity; 26.05 GiB already allocated; 1.42 GiB free; 28.98 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 24 |
+
|
| 25 |
+
2022-04-09 01:42:38,727 INFO [decode.py:743] num_arcs before pruning: 432616
|
| 26 |
+
2022-04-09 01:42:38,728 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 27 |
+
2022-04-09 01:42:38,736 INFO [decode.py:757] num_arcs after pruning: 9233
|
| 28 |
+
2022-04-09 01:43:13,573 INFO [decode_test.py:497] batch 100/?, cuts processed until now is 297
|
| 29 |
+
2022-04-09 01:43:48,362 INFO [decode.py:736] Caught exception:
|
| 30 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.34 GiB already allocated; 2.20 GiB free; 28.20 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 31 |
+
|
| 32 |
+
2022-04-09 01:43:48,363 INFO [decode.py:743] num_arcs before pruning: 319907
|
| 33 |
+
2022-04-09 01:43:48,363 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 34 |
+
2022-04-09 01:43:48,372 INFO [decode.py:757] num_arcs after pruning: 6358
|
| 35 |
+
2022-04-09 01:43:59,713 INFO [decode.py:736] Caught exception:
|
| 36 |
+
CUDA out of memory. Tried to allocate 2.74 GiB (GPU 0; 31.75 GiB total capacity; 27.51 GiB already allocated; 2.19 GiB free; 28.20 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 37 |
+
|
| 38 |
+
2022-04-09 01:43:59,713 INFO [decode.py:743] num_arcs before pruning: 313596
|
| 39 |
+
2022-04-09 01:43:59,713 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 40 |
+
2022-04-09 01:43:59,724 INFO [decode.py:757] num_arcs after pruning: 8252
|
| 41 |
+
2022-04-09 01:44:54,463 INFO [decode.py:736] Caught exception:
|
| 42 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.25 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 43 |
+
|
| 44 |
+
2022-04-09 01:44:54,463 INFO [decode.py:743] num_arcs before pruning: 353355
|
| 45 |
+
2022-04-09 01:44:54,463 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 46 |
+
2022-04-09 01:44:54,485 INFO [decode.py:757] num_arcs after pruning: 7520
|
| 47 |
+
2022-04-09 01:45:20,716 INFO [decode_test.py:497] batch 200/?, cuts processed until now is 570
|
| 48 |
+
2022-04-09 01:47:19,457 INFO [decode_test.py:497] batch 300/?, cuts processed until now is 806
|
| 49 |
+
2022-04-09 01:47:38,292 INFO [decode.py:736] Caught exception:
|
| 50 |
+
CUDA out of memory. Tried to allocate 2.28 GiB (GPU 0; 31.75 GiB total capacity; 26.28 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 51 |
+
|
| 52 |
+
2022-04-09 01:47:38,293 INFO [decode.py:743] num_arcs before pruning: 596002
|
| 53 |
+
2022-04-09 01:47:38,293 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 54 |
+
2022-04-09 01:47:38,312 INFO [decode.py:757] num_arcs after pruning: 10745
|
| 55 |
+
2022-04-09 01:49:18,493 INFO [decode.py:736] Caught exception:
|
| 56 |
+
|
| 57 |
+
Some bad things happened. Please read the above error messages and stack
|
| 58 |
+
trace. If you are using Python, the following command may be helpful:
|
| 59 |
+
|
| 60 |
+
gdb --args python /path/to/your/code.py
|
| 61 |
+
|
| 62 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
| 63 |
+
a debug version of k2.).
|
| 64 |
+
|
| 65 |
+
If you are unable to fix it, please open an issue at:
|
| 66 |
+
|
| 67 |
+
https://github.com/k2-fsa/k2/issues/new
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
2022-04-09 01:49:18,494 INFO [decode.py:743] num_arcs before pruning: 398202
|
| 71 |
+
2022-04-09 01:49:18,494 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 72 |
+
2022-04-09 01:49:18,541 INFO [decode.py:757] num_arcs after pruning: 14003
|
| 73 |
+
2022-04-09 01:49:21,800 INFO [decode_test.py:497] batch 400/?, cuts processed until now is 1082
|
| 74 |
+
2022-04-09 01:50:58,700 INFO [decode.py:736] Caught exception:
|
| 75 |
+
CUDA out of memory. Tried to allocate 4.85 GiB (GPU 0; 31.75 GiB total capacity; 25.89 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 76 |
+
|
| 77 |
+
2022-04-09 01:50:58,701 INFO [decode.py:743] num_arcs before pruning: 398349
|
| 78 |
+
2022-04-09 01:50:58,701 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 79 |
+
2022-04-09 01:50:58,709 INFO [decode.py:757] num_arcs after pruning: 10321
|
| 80 |
+
2022-04-09 01:51:31,627 INFO [decode_test.py:497] batch 500/?, cuts processed until now is 1334
|
| 81 |
+
2022-04-09 01:52:05,232 INFO [decode.py:736] Caught exception:
|
| 82 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.62 GiB already allocated; 1.47 GiB free; 28.93 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 83 |
+
|
| 84 |
+
2022-04-09 01:52:05,232 INFO [decode.py:743] num_arcs before pruning: 212665
|
| 85 |
+
2022-04-09 01:52:05,232 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 86 |
+
2022-04-09 01:52:05,241 INFO [decode.py:757] num_arcs after pruning: 6301
|
| 87 |
+
2022-04-09 01:53:29,890 INFO [decode.py:736] Caught exception:
|
| 88 |
+
CUDA out of memory. Tried to allocate 1.91 GiB (GPU 0; 31.75 GiB total capacity; 25.66 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 89 |
+
|
| 90 |
+
2022-04-09 01:53:29,891 INFO [decode.py:743] num_arcs before pruning: 883555
|
| 91 |
+
2022-04-09 01:53:29,891 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 92 |
+
2022-04-09 01:53:29,905 INFO [decode.py:757] num_arcs after pruning: 14819
|
| 93 |
+
2022-04-09 01:53:38,676 INFO [decode_test.py:497] batch 600/?, cuts processed until now is 1651
|
| 94 |
+
2022-04-09 01:54:57,438 INFO [decode.py:736] Caught exception:
|
| 95 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.34 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 96 |
+
|
| 97 |
+
2022-04-09 01:54:57,438 INFO [decode.py:743] num_arcs before pruning: 515795
|
| 98 |
+
2022-04-09 01:54:57,438 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 99 |
+
2022-04-09 01:54:57,447 INFO [decode.py:757] num_arcs after pruning: 10132
|
| 100 |
+
2022-04-09 01:55:28,356 INFO [decode.py:736] Caught exception:
|
| 101 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.46 GiB already allocated; 1.48 GiB free; 28.92 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 102 |
+
|
| 103 |
+
2022-04-09 01:55:28,356 INFO [decode.py:743] num_arcs before pruning: 670748
|
| 104 |
+
2022-04-09 01:55:28,356 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 105 |
+
2022-04-09 01:55:28,365 INFO [decode.py:757] num_arcs after pruning: 10497
|
| 106 |
+
2022-04-09 01:55:42,238 INFO [decode_test.py:497] batch 700/?, cuts processed until now is 1956
|
| 107 |
+
2022-04-09 01:57:57,456 INFO [decode_test.py:497] batch 800/?, cuts processed until now is 2238
|
| 108 |
+
2022-04-09 01:58:04,281 INFO [decode.py:736] Caught exception:
|
| 109 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 3.07 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 110 |
+
|
| 111 |
+
2022-04-09 01:58:04,282 INFO [decode.py:743] num_arcs before pruning: 175423
|
| 112 |
+
2022-04-09 01:58:04,282 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 113 |
+
2022-04-09 01:58:04,296 INFO [decode.py:757] num_arcs after pruning: 7926
|
| 114 |
+
2022-04-09 01:59:07,916 INFO [decode.py:736] Caught exception:
|
| 115 |
+
CUDA out of memory. Tried to allocate 4.68 GiB (GPU 0; 31.75 GiB total capacity; 24.40 GiB already allocated; 3.06 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 116 |
+
|
| 117 |
+
2022-04-09 01:59:07,917 INFO [decode.py:743] num_arcs before pruning: 259758
|
| 118 |
+
2022-04-09 01:59:07,917 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 119 |
+
2022-04-09 01:59:07,928 INFO [decode.py:757] num_arcs after pruning: 6026
|
| 120 |
+
2022-04-09 02:00:00,623 INFO [decode_test.py:497] batch 900/?, cuts processed until now is 2536
|
| 121 |
+
2022-04-09 02:01:22,959 INFO [decode.py:736] Caught exception:
|
| 122 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.44 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 123 |
+
|
| 124 |
+
2022-04-09 02:01:22,959 INFO [decode.py:743] num_arcs before pruning: 749228
|
| 125 |
+
2022-04-09 02:01:22,959 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 126 |
+
2022-04-09 02:01:22,968 INFO [decode.py:757] num_arcs after pruning: 23868
|
| 127 |
+
2022-04-09 02:01:59,449 INFO [decode_test.py:497] batch 1000/?, cuts processed until now is 2824
|
| 128 |
+
2022-04-09 02:03:05,494 INFO [decode.py:736] Caught exception:
|
| 129 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.38 GiB already allocated; 3.06 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 130 |
+
|
| 131 |
+
2022-04-09 02:03:05,494 INFO [decode.py:743] num_arcs before pruning: 255135
|
| 132 |
+
2022-04-09 02:03:05,494 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 133 |
+
2022-04-09 02:03:05,504 INFO [decode.py:757] num_arcs after pruning: 5955
|
| 134 |
+
2022-04-09 02:03:48,017 INFO [decode.py:736] Caught exception:
|
| 135 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.61 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 136 |
+
|
| 137 |
+
2022-04-09 02:03:48,017 INFO [decode.py:743] num_arcs before pruning: 517077
|
| 138 |
+
2022-04-09 02:03:48,017 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 139 |
+
2022-04-09 02:03:48,026 INFO [decode.py:757] num_arcs after pruning: 7695
|
| 140 |
+
2022-04-09 02:04:09,806 INFO [decode_test.py:497] batch 1100/?, cuts processed until now is 3105
|
| 141 |
+
2022-04-09 02:04:31,410 INFO [decode.py:736] Caught exception:
|
| 142 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.34 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 143 |
+
|
| 144 |
+
2022-04-09 02:04:31,411 INFO [decode.py:743] num_arcs before pruning: 859561
|
| 145 |
+
2022-04-09 02:04:31,411 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 146 |
+
2022-04-09 02:04:31,422 INFO [decode.py:757] num_arcs after pruning: 13014
|
| 147 |
+
2022-04-09 02:06:11,496 INFO [decode_test.py:497] batch 1200/?, cuts processed until now is 3401
|
| 148 |
+
2022-04-09 02:08:10,727 INFO [decode_test.py:497] batch 1300/?, cuts processed until now is 3730
|
| 149 |
+
2022-04-09 02:10:17,677 INFO [decode_test.py:497] batch 1400/?, cuts processed until now is 4067
|
| 150 |
+
2022-04-09 02:12:13,175 INFO [decode_test.py:497] batch 1500/?, cuts processed until now is 4329
|
| 151 |
+
2022-04-09 02:13:02,842 INFO [decode.py:736] Caught exception:
|
| 152 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.55 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 153 |
+
|
| 154 |
+
2022-04-09 02:13:02,843 INFO [decode.py:743] num_arcs before pruning: 475511
|
| 155 |
+
2022-04-09 02:13:02,843 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 156 |
+
2022-04-09 02:13:02,849 INFO [decode.py:757] num_arcs after pruning: 8439
|
| 157 |
+
2022-04-09 02:13:46,588 INFO [decode.py:736] Caught exception:
|
| 158 |
+
CUDA out of memory. Tried to allocate 2.37 GiB (GPU 0; 31.75 GiB total capacity; 26.83 GiB already allocated; 1.45 GiB free; 28.94 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 159 |
+
|
| 160 |
+
2022-04-09 02:13:46,588 INFO [decode.py:743] num_arcs before pruning: 595488
|
| 161 |
+
2022-04-09 02:13:46,588 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 162 |
+
2022-04-09 02:13:46,598 INFO [decode.py:757] num_arcs after pruning: 13475
|
| 163 |
+
2022-04-09 02:14:21,206 INFO [decode_test.py:497] batch 1600/?, cuts processed until now is 4598
|
| 164 |
+
2022-04-09 02:16:42,740 INFO [decode_test.py:497] batch 1700/?, cuts processed until now is 4969
|
| 165 |
+
2022-04-09 02:17:13,672 INFO [decode.py:736] Caught exception:
|
| 166 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.39 GiB already allocated; 1.45 GiB free; 28.94 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 167 |
+
|
| 168 |
+
2022-04-09 02:17:13,673 INFO [decode.py:743] num_arcs before pruning: 615734
|
| 169 |
+
2022-04-09 02:17:13,673 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 170 |
+
2022-04-09 02:17:13,685 INFO [decode.py:757] num_arcs after pruning: 8684
|
| 171 |
+
2022-04-09 02:18:54,514 INFO [decode_test.py:497] batch 1800/?, cuts processed until now is 5260
|
| 172 |
+
2022-04-09 02:18:59,938 INFO [decode.py:736] Caught exception:
|
| 173 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.36 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 174 |
+
|
| 175 |
+
2022-04-09 02:18:59,938 INFO [decode.py:743] num_arcs before pruning: 360099
|
| 176 |
+
2022-04-09 02:18:59,938 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 177 |
+
2022-04-09 02:18:59,949 INFO [decode.py:757] num_arcs after pruning: 6898
|
| 178 |
+
2022-04-09 02:19:48,186 INFO [decode.py:736] Caught exception:
|
| 179 |
+
CUDA out of memory. Tried to allocate 6.00 GiB (GPU 0; 31.75 GiB total capacity; 27.15 GiB already allocated; 967.75 MiB free; 29.45 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 180 |
+
|
| 181 |
+
2022-04-09 02:19:48,186 INFO [decode.py:743] num_arcs before pruning: 168720
|
| 182 |
+
2022-04-09 02:19:48,186 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 183 |
+
2022-04-09 02:19:48,201 INFO [decode.py:757] num_arcs after pruning: 5346
|
| 184 |
+
2022-04-09 02:20:52,049 INFO [decode_test.py:497] batch 1900/?, cuts processed until now is 5585
|
| 185 |
+
2022-04-09 02:22:12,107 INFO [decode.py:736] Caught exception:
|
| 186 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 973.75 MiB free; 29.44 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 187 |
+
|
| 188 |
+
2022-04-09 02:22:12,107 INFO [decode.py:743] num_arcs before pruning: 1151735
|
| 189 |
+
2022-04-09 02:22:12,107 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 190 |
+
2022-04-09 02:22:12,120 INFO [decode.py:757] num_arcs after pruning: 8335
|
| 191 |
+
2022-04-09 02:23:01,497 INFO [decode_test.py:497] batch 2000/?, cuts processed until now is 5902
|
| 192 |
+
2022-04-09 02:25:26,356 INFO [decode_test.py:497] batch 2100/?, cuts processed until now is 6219
|
| 193 |
+
2022-04-09 02:25:56,466 INFO [decode.py:736] Caught exception:
|
| 194 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.34 GiB already allocated; 973.75 MiB free; 29.44 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 195 |
+
|
| 196 |
+
2022-04-09 02:25:56,467 INFO [decode.py:743] num_arcs before pruning: 612804
|
| 197 |
+
2022-04-09 02:25:56,467 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 198 |
+
2022-04-09 02:25:56,477 INFO [decode.py:757] num_arcs after pruning: 10853
|
| 199 |
+
2022-04-09 02:27:26,441 INFO [decode_test.py:497] batch 2200/?, cuts processed until now is 6480
|
| 200 |
+
2022-04-09 02:29:28,073 INFO [decode_test.py:497] batch 2300/?, cuts processed until now is 6768
|
| 201 |
+
2022-04-09 02:31:41,553 INFO [decode_test.py:497] batch 2400/?, cuts processed until now is 7120
|
| 202 |
+
2022-04-09 02:31:55,632 INFO [decode.py:736] Caught exception:
|
| 203 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 204 |
+
|
| 205 |
+
2022-04-09 02:31:55,632 INFO [decode.py:743] num_arcs before pruning: 411490
|
| 206 |
+
2022-04-09 02:31:55,632 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 207 |
+
2022-04-09 02:31:55,638 INFO [decode.py:757] num_arcs after pruning: 8626
|
| 208 |
+
2022-04-09 02:33:22,034 INFO [decode.py:736] Caught exception:
|
| 209 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 210 |
+
|
| 211 |
+
2022-04-09 02:33:22,034 INFO [decode.py:743] num_arcs before pruning: 625728
|
| 212 |
+
2022-04-09 02:33:22,035 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 213 |
+
2022-04-09 02:33:22,043 INFO [decode.py:757] num_arcs after pruning: 9502
|
| 214 |
+
2022-04-09 02:33:37,663 INFO [decode_test.py:497] batch 2500/?, cuts processed until now is 7387
|
| 215 |
+
2022-04-09 02:34:18,300 INFO [decode.py:736] Caught exception:
|
| 216 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.51 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 217 |
+
|
| 218 |
+
2022-04-09 02:34:18,301 INFO [decode.py:743] num_arcs before pruning: 1015956
|
| 219 |
+
2022-04-09 02:34:18,301 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 220 |
+
2022-04-09 02:34:18,314 INFO [decode.py:757] num_arcs after pruning: 14404
|
| 221 |
+
2022-04-09 02:34:20,220 INFO [decode.py:841] Caught exception:
|
| 222 |
+
CUDA out of memory. Tried to allocate 5.58 GiB (GPU 0; 31.75 GiB total capacity; 24.87 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 223 |
+
|
| 224 |
+
2022-04-09 02:34:20,221 INFO [decode.py:843] num_paths before decreasing: 1000
|
| 225 |
+
2022-04-09 02:34:20,221 INFO [decode.py:852] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 226 |
+
2022-04-09 02:34:20,221 INFO [decode.py:858] num_paths after decreasing: 500
|
| 227 |
+
2022-04-09 02:34:40,089 INFO [decode.py:736] Caught exception:
|
| 228 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.38 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 229 |
+
|
| 230 |
+
2022-04-09 02:34:40,089 INFO [decode.py:743] num_arcs before pruning: 570686
|
| 231 |
+
2022-04-09 02:34:40,089 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 232 |
+
2022-04-09 02:34:40,098 INFO [decode.py:757] num_arcs after pruning: 9182
|
| 233 |
+
2022-04-09 02:35:50,624 INFO [decode_test.py:497] batch 2600/?, cuts processed until now is 7764
|
| 234 |
+
2022-04-09 02:36:44,519 INFO [decode.py:736] Caught exception:
|
| 235 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.61 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 236 |
+
|
| 237 |
+
2022-04-09 02:36:44,519 INFO [decode.py:743] num_arcs before pruning: 1066267
|
| 238 |
+
2022-04-09 02:36:44,519 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 239 |
+
2022-04-09 02:36:44,530 INFO [decode.py:757] num_arcs after pruning: 6963
|
| 240 |
+
2022-04-09 02:38:18,717 INFO [decode_test.py:497] batch 2700/?, cuts processed until now is 8078
|
| 241 |
+
2022-04-09 02:40:07,021 INFO [decode.py:736] Caught exception:
|
| 242 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 243 |
+
|
| 244 |
+
2022-04-09 02:40:07,022 INFO [decode.py:743] num_arcs before pruning: 1023667
|
| 245 |
+
2022-04-09 02:40:07,022 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 246 |
+
2022-04-09 02:40:07,034 INFO [decode.py:757] num_arcs after pruning: 13090
|
| 247 |
+
2022-04-09 02:40:25,184 INFO [decode_test.py:497] batch 2800/?, cuts processed until now is 8444
|
| 248 |
+
2022-04-09 02:41:27,080 INFO [decode.py:736] Caught exception:
|
| 249 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.32 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 250 |
+
|
| 251 |
+
2022-04-09 02:41:27,080 INFO [decode.py:743] num_arcs before pruning: 739744
|
| 252 |
+
2022-04-09 02:41:27,080 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 253 |
+
2022-04-09 02:41:27,093 INFO [decode.py:757] num_arcs after pruning: 9791
|
| 254 |
+
2022-04-09 02:42:44,319 INFO [decode_test.py:497] batch 2900/?, cuts processed until now is 8765
|
| 255 |
+
2022-04-09 02:42:44,656 INFO [decode.py:736] Caught exception:
|
| 256 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.73 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 257 |
+
|
| 258 |
+
2022-04-09 02:42:44,656 INFO [decode.py:743] num_arcs before pruning: 666168
|
| 259 |
+
2022-04-09 02:42:44,656 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 260 |
+
2022-04-09 02:42:44,665 INFO [decode.py:757] num_arcs after pruning: 17223
|
| 261 |
+
2022-04-09 02:43:05,748 INFO [decode.py:736] Caught exception:
|
| 262 |
+
CUDA out of memory. Tried to allocate 5.60 GiB (GPU 0; 31.75 GiB total capacity; 26.18 GiB already allocated; 1.14 GiB free; 29.26 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 263 |
+
|
| 264 |
+
2022-04-09 02:43:05,748 INFO [decode.py:743] num_arcs before pruning: 188729
|
| 265 |
+
2022-04-09 02:43:05,748 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 266 |
+
2022-04-09 02:43:05,762 INFO [decode.py:757] num_arcs after pruning: 8688
|
| 267 |
+
2022-04-09 02:44:54,469 INFO [decode_test.py:497] batch 3000/?, cuts processed until now is 9050
|
| 268 |
+
2022-04-09 02:46:55,167 INFO [decode_test.py:497] batch 3100/?, cuts processed until now is 9296
|
| 269 |
+
2022-04-09 02:47:28,418 INFO [decode.py:736] Caught exception:
|
| 270 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 20.00 GiB already allocated; 3.07 GiB free; 27.33 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 271 |
+
|
| 272 |
+
2022-04-09 02:47:28,419 INFO [decode.py:743] num_arcs before pruning: 160153
|
| 273 |
+
2022-04-09 02:47:28,419 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 274 |
+
2022-04-09 02:47:28,448 INFO [decode.py:757] num_arcs after pruning: 7778
|
| 275 |
+
2022-04-09 02:49:21,448 INFO [decode_test.py:497] batch 3200/?, cuts processed until now is 9652
|
| 276 |
+
2022-04-09 02:50:17,558 INFO [decode.py:736] Caught exception:
|
| 277 |
+
CUDA out of memory. Tried to allocate 6.13 GiB (GPU 0; 31.75 GiB total capacity; 27.60 GiB already allocated; 895.75 MiB free; 29.52 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 278 |
+
|
| 279 |
+
2022-04-09 02:50:17,558 INFO [decode.py:743] num_arcs before pruning: 388116
|
| 280 |
+
2022-04-09 02:50:17,559 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 281 |
+
2022-04-09 02:50:17,565 INFO [decode.py:757] num_arcs after pruning: 10555
|
| 282 |
+
2022-04-09 02:51:30,675 INFO [decode_test.py:497] batch 3300/?, cuts processed until now is 10071
|
| 283 |
+
2022-04-09 02:53:49,565 INFO [decode_test.py:497] batch 3400/?, cuts processed until now is 10342
|
| 284 |
+
2022-04-09 02:55:49,392 INFO [decode_test.py:497] batch 3500/?, cuts processed until now is 10642
|
| 285 |
+
2022-04-09 02:58:07,518 INFO [decode_test.py:497] batch 3600/?, cuts processed until now is 10951
|
| 286 |
+
2022-04-09 02:58:16,360 INFO [decode.py:736] Caught exception:
|
| 287 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.29 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 288 |
+
|
| 289 |
+
2022-04-09 02:58:16,361 INFO [decode.py:743] num_arcs before pruning: 396714
|
| 290 |
+
2022-04-09 02:58:16,361 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 291 |
+
2022-04-09 02:58:16,374 INFO [decode.py:757] num_arcs after pruning: 9543
|
| 292 |
+
2022-04-09 03:00:00,485 INFO [decode_test.py:497] batch 3700/?, cuts processed until now is 11231
|
| 293 |
+
2022-04-09 03:00:17,600 INFO [decode.py:736] Caught exception:
|
| 294 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 295 |
+
|
| 296 |
+
2022-04-09 03:00:17,601 INFO [decode.py:743] num_arcs before pruning: 854366
|
| 297 |
+
2022-04-09 03:00:17,601 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 298 |
+
2022-04-09 03:00:17,612 INFO [decode.py:757] num_arcs after pruning: 10487
|
| 299 |
+
2022-04-09 03:00:20,098 INFO [decode.py:736] Caught exception:
|
| 300 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.68 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 301 |
+
|
| 302 |
+
2022-04-09 03:00:20,098 INFO [decode.py:743] num_arcs before pruning: 442824
|
| 303 |
+
2022-04-09 03:00:20,098 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 304 |
+
2022-04-09 03:00:20,108 INFO [decode.py:757] num_arcs after pruning: 5265
|
| 305 |
+
2022-04-09 03:02:00,114 INFO [decode_test.py:497] batch 3800/?, cuts processed until now is 11509
|
| 306 |
+
2022-04-09 03:02:11,570 INFO [decode.py:736] Caught exception:
|
| 307 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.19 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 308 |
+
|
| 309 |
+
2022-04-09 03:02:11,571 INFO [decode.py:743] num_arcs before pruning: 285638
|
| 310 |
+
2022-04-09 03:02:11,571 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 311 |
+
2022-04-09 03:02:11,579 INFO [decode.py:757] num_arcs after pruning: 5903
|
| 312 |
+
2022-04-09 03:04:02,757 INFO [decode_test.py:497] batch 3900/?, cuts processed until now is 11774
|
| 313 |
+
2022-04-09 03:05:19,989 INFO [decode.py:736] Caught exception:
|
| 314 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.73 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 315 |
+
|
| 316 |
+
2022-04-09 03:05:19,990 INFO [decode.py:743] num_arcs before pruning: 637327
|
| 317 |
+
2022-04-09 03:05:19,990 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 318 |
+
2022-04-09 03:05:19,999 INFO [decode.py:757] num_arcs after pruning: 6357
|
| 319 |
+
2022-04-09 03:06:01,953 INFO [decode_test.py:497] batch 4000/?, cuts processed until now is 12045
|
| 320 |
+
2022-04-09 03:07:49,854 INFO [decode_test.py:497] batch 4100/?, cuts processed until now is 12300
|
| 321 |
+
2022-04-09 03:09:15,137 INFO [decode.py:736] Caught exception:
|
| 322 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.45 GiB already allocated; 3.08 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 323 |
+
|
| 324 |
+
2022-04-09 03:09:15,138 INFO [decode.py:743] num_arcs before pruning: 507733
|
| 325 |
+
2022-04-09 03:09:15,138 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 326 |
+
2022-04-09 03:09:15,148 INFO [decode.py:757] num_arcs after pruning: 4196
|
| 327 |
+
2022-04-09 03:09:47,397 INFO [decode.py:736] Caught exception:
|
| 328 |
+
CUDA out of memory. Tried to allocate 5.86 GiB (GPU 0; 31.75 GiB total capacity; 27.78 GiB already allocated; 925.75 MiB free; 29.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 329 |
+
|
| 330 |
+
2022-04-09 03:09:47,397 INFO [decode.py:743] num_arcs before pruning: 514118
|
| 331 |
+
2022-04-09 03:09:47,397 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 332 |
+
2022-04-09 03:09:47,407 INFO [decode.py:757] num_arcs after pruning: 7168
|
| 333 |
+
2022-04-09 03:10:00,013 INFO [decode_test.py:497] batch 4200/?, cuts processed until now is 12580
|
| 334 |
+
2022-04-09 03:10:33,411 INFO [decode.py:736] Caught exception:
|
| 335 |
+
CUDA out of memory. Tried to allocate 2.80 GiB (GPU 0; 31.75 GiB total capacity; 27.70 GiB already allocated; 925.75 MiB free; 29.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 336 |
+
|
| 337 |
+
2022-04-09 03:10:33,411 INFO [decode.py:743] num_arcs before pruning: 374935
|
| 338 |
+
2022-04-09 03:10:33,411 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 339 |
+
2022-04-09 03:10:33,418 INFO [decode.py:757] num_arcs after pruning: 10023
|
| 340 |
+
2022-04-09 03:12:04,333 INFO [decode_test.py:497] batch 4300/?, cuts processed until now is 12807
|
| 341 |
+
2022-04-09 03:14:06,889 INFO [decode_test.py:497] batch 4400/?, cuts processed until now is 13050
|
| 342 |
+
2022-04-09 03:14:34,787 INFO [decode.py:736] Caught exception:
|
| 343 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.47 GiB already allocated; 925.75 MiB free; 29.49 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 344 |
+
|
| 345 |
+
2022-04-09 03:14:34,788 INFO [decode.py:743] num_arcs before pruning: 767465
|
| 346 |
+
2022-04-09 03:14:34,788 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 347 |
+
2022-04-09 03:14:34,797 INFO [decode.py:757] num_arcs after pruning: 19151
|
| 348 |
+
2022-04-09 03:15:08,864 INFO [decode.py:736] Caught exception:
|
| 349 |
+
|
| 350 |
+
Some bad things happened. Please read the above error messages and stack
|
| 351 |
+
trace. If you are using Python, the following command may be helpful:
|
| 352 |
+
|
| 353 |
+
gdb --args python /path/to/your/code.py
|
| 354 |
+
|
| 355 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
| 356 |
+
a debug version of k2.).
|
| 357 |
+
|
| 358 |
+
If you are unable to fix it, please open an issue at:
|
| 359 |
+
|
| 360 |
+
https://github.com/k2-fsa/k2/issues/new
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
2022-04-09 03:15:08,864 INFO [decode.py:743] num_arcs before pruning: 123833
|
| 364 |
+
2022-04-09 03:15:08,864 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 365 |
+
2022-04-09 03:15:08,913 INFO [decode.py:757] num_arcs after pruning: 4150
|
| 366 |
+
2022-04-09 03:15:34,899 INFO [decode.py:736] Caught exception:
|
| 367 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 25.64 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 368 |
+
|
| 369 |
+
2022-04-09 03:15:34,899 INFO [decode.py:743] num_arcs before pruning: 444800
|
| 370 |
+
2022-04-09 03:15:34,899 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 371 |
+
2022-04-09 03:15:34,908 INFO [decode.py:757] num_arcs after pruning: 11839
|
| 372 |
+
2022-04-09 03:16:08,462 INFO [decode_test.py:497] batch 4500/?, cuts processed until now is 13295
|
| 373 |
+
2022-04-09 03:17:56,946 INFO [decode_test.py:497] batch 4600/?, cuts processed until now is 13593
|
| 374 |
+
2022-04-09 03:18:16,099 INFO [decode.py:736] Caught exception:
|
| 375 |
+
CUDA out of memory. Tried to allocate 5.53 GiB (GPU 0; 31.75 GiB total capacity; 26.53 GiB already allocated; 1.12 GiB free; 29.28 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 376 |
+
|
| 377 |
+
2022-04-09 03:18:16,099 INFO [decode.py:743] num_arcs before pruning: 350609
|
| 378 |
+
2022-04-09 03:18:16,100 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 379 |
+
2022-04-09 03:18:16,105 INFO [decode.py:757] num_arcs after pruning: 9262
|
| 380 |
+
2022-04-09 03:19:57,230 INFO [decode_test.py:497] batch 4700/?, cuts processed until now is 13858
|
| 381 |
+
2022-04-09 03:20:19,775 INFO [decode.py:736] Caught exception:
|
| 382 |
+
CUDA out of memory. Tried to allocate 4.87 GiB (GPU 0; 31.75 GiB total capacity; 25.78 GiB already allocated; 1.12 GiB free; 29.28 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 383 |
+
|
| 384 |
+
2022-04-09 03:20:19,775 INFO [decode.py:743] num_arcs before pruning: 375071
|
| 385 |
+
2022-04-09 03:20:19,775 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 386 |
+
2022-04-09 03:20:19,785 INFO [decode.py:757] num_arcs after pruning: 6365
|
| 387 |
+
2022-04-09 03:21:29,481 INFO [decode.py:736] Caught exception:
|
| 388 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.42 GiB already allocated; 1.12 GiB free; 29.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 389 |
+
|
| 390 |
+
2022-04-09 03:21:29,481 INFO [decode.py:743] num_arcs before pruning: 872088
|
| 391 |
+
2022-04-09 03:21:29,481 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 392 |
+
2022-04-09 03:21:29,492 INFO [decode.py:757] num_arcs after pruning: 10043
|
| 393 |
+
2022-04-09 03:22:01,760 INFO [decode_test.py:497] batch 4800/?, cuts processed until now is 14079
|
| 394 |
+
2022-04-09 03:24:10,370 INFO [decode_test.py:497] batch 4900/?, cuts processed until now is 14298
|
| 395 |
+
2022-04-09 03:26:10,811 INFO [decode_test.py:497] batch 5000/?, cuts processed until now is 14515
|
| 396 |
+
2022-04-09 03:27:46,191 INFO [decode.py:736] Caught exception:
|
| 397 |
+
|
| 398 |
+
Some bad things happened. Please read the above error messages and stack
|
| 399 |
+
trace. If you are using Python, the following command may be helpful:
|
| 400 |
+
|
| 401 |
+
gdb --args python /path/to/your/code.py
|
| 402 |
+
|
| 403 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
| 404 |
+
a debug version of k2.).
|
| 405 |
+
|
| 406 |
+
If you are unable to fix it, please open an issue at:
|
| 407 |
+
|
| 408 |
+
https://github.com/k2-fsa/k2/issues/new
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
2022-04-09 03:27:46,192 INFO [decode.py:743] num_arcs before pruning: 246382
|
| 412 |
+
2022-04-09 03:27:46,192 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 413 |
+
2022-04-09 03:27:46,253 INFO [decode.py:757] num_arcs after pruning: 6775
|
| 414 |
+
2022-04-09 03:28:15,199 INFO [decode_test.py:497] batch 5100/?, cuts processed until now is 14718
|
| 415 |
+
2022-04-09 03:29:19,807 INFO [decode.py:736] Caught exception:
|
| 416 |
+
CUDA out of memory. Tried to allocate 6.15 GiB (GPU 0; 31.75 GiB total capacity; 26.67 GiB already allocated; 1.11 GiB free; 29.29 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 417 |
+
|
| 418 |
+
2022-04-09 03:29:19,808 INFO [decode.py:743] num_arcs before pruning: 220820
|
| 419 |
+
2022-04-09 03:29:19,808 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 420 |
+
2022-04-09 03:29:19,815 INFO [decode.py:757] num_arcs after pruning: 13482
|
| 421 |
+
2022-04-09 03:30:16,045 INFO [decode_test.py:497] batch 5200/?, cuts processed until now is 14930
|
| 422 |
+
2022-04-09 03:32:12,235 INFO [decode_test.py:497] batch 5300/?, cuts processed until now is 15128
|
| 423 |
+
2022-04-09 03:33:06,358 INFO [decode.py:736] Caught exception:
|
| 424 |
+
|
| 425 |
+
Some bad things happened. Please read the above error messages and stack
|
| 426 |
+
trace. If you are using Python, the following command may be helpful:
|
| 427 |
+
|
| 428 |
+
gdb --args python /path/to/your/code.py
|
| 429 |
+
|
| 430 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
| 431 |
+
a debug version of k2.).
|
| 432 |
+
|
| 433 |
+
If you are unable to fix it, please open an issue at:
|
| 434 |
+
|
| 435 |
+
https://github.com/k2-fsa/k2/issues/new
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
2022-04-09 03:33:06,359 INFO [decode.py:743] num_arcs before pruning: 190203
|
| 439 |
+
2022-04-09 03:33:06,359 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 440 |
+
2022-04-09 03:33:06,413 INFO [decode.py:757] num_arcs after pruning: 6202
|
| 441 |
+
2022-04-09 03:34:14,862 INFO [decode_test.py:497] batch 5400/?, cuts processed until now is 15327
|
| 442 |
+
2022-04-09 03:36:18,973 INFO [decode_test.py:497] batch 5500/?, cuts processed until now is 15531
|
| 443 |
+
2022-04-09 03:38:18,633 INFO [decode_test.py:497] batch 5600/?, cuts processed until now is 15724
|
| 444 |
+
2022-04-09 03:38:48,490 INFO [decode.py:736] Caught exception:
|
| 445 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.52 GiB already allocated; 3.07 GiB free; 27.32 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 446 |
+
|
| 447 |
+
2022-04-09 03:38:48,491 INFO [decode.py:743] num_arcs before pruning: 554330
|
| 448 |
+
2022-04-09 03:38:48,491 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 449 |
+
2022-04-09 03:38:48,500 INFO [decode.py:757] num_arcs after pruning: 10730
|
| 450 |
+
2022-04-09 03:39:51,281 INFO [decode.py:736] Caught exception:
|
| 451 |
+
CUDA out of memory. Tried to allocate 4.83 GiB (GPU 0; 31.75 GiB total capacity; 25.96 GiB already allocated; 1.31 GiB free; 29.08 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 452 |
+
|
| 453 |
+
2022-04-09 03:39:51,281 INFO [decode.py:743] num_arcs before pruning: 160031
|
| 454 |
+
2022-04-09 03:39:51,281 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 455 |
+
2022-04-09 03:39:51,288 INFO [decode.py:757] num_arcs after pruning: 4270
|
| 456 |
+
2022-04-09 03:40:28,016 INFO [decode_test.py:497] batch 5700/?, cuts processed until now is 15908
|
| 457 |
+
2022-04-09 03:40:46,608 INFO [decode.py:736] Caught exception:
|
| 458 |
+
CUDA out of memory. Tried to allocate 2.58 GiB (GPU 0; 31.75 GiB total capacity; 27.28 GiB already allocated; 1.32 GiB free; 29.07 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 459 |
+
|
| 460 |
+
2022-04-09 03:40:46,608 INFO [decode.py:743] num_arcs before pruning: 406026
|
| 461 |
+
2022-04-09 03:40:46,608 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 462 |
+
2022-04-09 03:40:46,616 INFO [decode.py:757] num_arcs after pruning: 11179
|
| 463 |
+
2022-04-09 03:42:16,464 INFO [decode.py:736] Caught exception:
|
| 464 |
+
CUDA out of memory. Tried to allocate 2.29 GiB (GPU 0; 31.75 GiB total capacity; 26.71 GiB already allocated; 1.32 GiB free; 29.07 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 465 |
+
|
| 466 |
+
2022-04-09 03:42:16,464 INFO [decode.py:743] num_arcs before pruning: 639824
|
| 467 |
+
2022-04-09 03:42:16,464 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 468 |
+
2022-04-09 03:42:16,476 INFO [decode.py:757] num_arcs after pruning: 5520
|
| 469 |
+
2022-04-09 03:42:52,683 INFO [decode_test.py:497] batch 5800/?, cuts processed until now is 16094
|
| 470 |
+
2022-04-09 03:44:51,754 INFO [decode_test.py:497] batch 5900/?, cuts processed until now is 16289
|
| 471 |
+
2022-04-09 03:46:52,121 INFO [decode_test.py:497] batch 6000/?, cuts processed until now is 16488
|
| 472 |
+
2022-04-09 03:48:54,739 INFO [decode_test.py:497] batch 6100/?, cuts processed until now is 16661
|
| 473 |
+
2022-04-09 03:49:24,829 INFO [decode.py:736] Caught exception:
|
| 474 |
+
CUDA out of memory. Tried to allocate 1.84 GiB (GPU 0; 31.75 GiB total capacity; 28.87 GiB already allocated; 409.75 MiB free; 29.99 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 475 |
+
|
| 476 |
+
2022-04-09 03:49:24,830 INFO [decode.py:743] num_arcs before pruning: 443401
|
| 477 |
+
2022-04-09 03:49:24,830 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 478 |
+
2022-04-09 03:49:24,837 INFO [decode.py:757] num_arcs after pruning: 5211
|
| 479 |
+
2022-04-09 03:50:27,492 INFO [decode.py:736] Caught exception:
|
| 480 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.35 GiB already allocated; 2.15 GiB free; 28.24 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 481 |
+
|
| 482 |
+
2022-04-09 03:50:27,493 INFO [decode.py:743] num_arcs before pruning: 361598
|
| 483 |
+
2022-04-09 03:50:27,493 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 484 |
+
2022-04-09 03:50:27,507 INFO [decode.py:757] num_arcs after pruning: 8660
|
| 485 |
+
2022-04-09 03:51:02,856 INFO [decode_test.py:497] batch 6200/?, cuts processed until now is 16828
|
| 486 |
+
2022-04-09 03:53:03,912 INFO [decode_test.py:497] batch 6300/?, cuts processed until now is 17002
|
| 487 |
+
2022-04-09 03:55:04,964 INFO [decode_test.py:497] batch 6400/?, cuts processed until now is 17181
|
| 488 |
+
2022-04-09 03:55:08,345 INFO [decode.py:736] Caught exception:
|
| 489 |
+
CUDA out of memory. Tried to allocate 4.89 GiB (GPU 0; 31.75 GiB total capacity; 26.28 GiB already allocated; 2.16 GiB free; 28.24 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 490 |
+
|
| 491 |
+
2022-04-09 03:55:08,345 INFO [decode.py:743] num_arcs before pruning: 867262
|
| 492 |
+
2022-04-09 03:55:08,345 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 493 |
+
2022-04-09 03:55:08,356 INFO [decode.py:757] num_arcs after pruning: 6494
|
| 494 |
+
2022-04-09 03:56:03,884 INFO [decode.py:736] Caught exception:
|
| 495 |
+
CUDA out of memory. Tried to allocate 1.90 GiB (GPU 0; 31.75 GiB total capacity; 28.97 GiB already allocated; 1.16 GiB free; 29.23 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 496 |
+
|
| 497 |
+
2022-04-09 03:56:03,885 INFO [decode.py:743] num_arcs before pruning: 233755
|
| 498 |
+
2022-04-09 03:56:03,885 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 499 |
+
2022-04-09 03:56:03,910 INFO [decode.py:757] num_arcs after pruning: 5823
|
| 500 |
+
2022-04-09 03:57:08,774 INFO [decode_test.py:497] batch 6500/?, cuts processed until now is 17347
|
| 501 |
+
2022-04-09 03:59:01,245 INFO [decode_test.py:497] batch 6600/?, cuts processed until now is 17502
|
| 502 |
+
2022-04-09 03:59:13,147 INFO [decode.py:736] Caught exception:
|
| 503 |
+
CUDA out of memory. Tried to allocate 5.80 GiB (GPU 0; 31.75 GiB total capacity; 26.73 GiB already allocated; 1.17 GiB free; 29.22 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 504 |
+
|
| 505 |
+
2022-04-09 03:59:13,147 INFO [decode.py:743] num_arcs before pruning: 174004
|
| 506 |
+
2022-04-09 03:59:13,147 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 507 |
+
2022-04-09 03:59:13,155 INFO [decode.py:757] num_arcs after pruning: 6857
|
| 508 |
+
2022-04-09 04:00:59,687 INFO [decode_test.py:497] batch 6700/?, cuts processed until now is 17661
|
| 509 |
+
2022-04-09 04:03:01,660 INFO [decode_test.py:497] batch 6800/?, cuts processed until now is 17823
|
| 510 |
+
2022-04-09 04:04:55,219 INFO [decode_test.py:497] batch 6900/?, cuts processed until now is 17997
|
| 511 |
+
2022-04-09 04:07:05,841 INFO [decode_test.py:497] batch 7000/?, cuts processed until now is 18159
|
| 512 |
+
2022-04-09 04:09:04,994 INFO [decode_test.py:497] batch 7100/?, cuts processed until now is 18299
|
| 513 |
+
2022-04-09 04:11:07,439 INFO [decode_test.py:497] batch 7200/?, cuts processed until now is 18432
|
| 514 |
+
2022-04-09 04:13:18,126 INFO [decode_test.py:497] batch 7300/?, cuts processed until now is 18552
|
| 515 |
+
2022-04-09 04:15:23,102 INFO [decode_test.py:497] batch 7400/?, cuts processed until now is 18656
|
| 516 |
+
2022-04-09 04:17:49,550 INFO [decode_test.py:497] batch 7500/?, cuts processed until now is 18798
|
| 517 |
+
2022-04-09 04:19:16,128 INFO [decode.py:736] Caught exception:
|
| 518 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.34 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 519 |
+
|
| 520 |
+
2022-04-09 04:19:16,129 INFO [decode.py:743] num_arcs before pruning: 1155990
|
| 521 |
+
2022-04-09 04:19:16,129 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 522 |
+
2022-04-09 04:19:16,143 INFO [decode.py:757] num_arcs after pruning: 9141
|
| 523 |
+
2022-04-09 04:20:19,961 INFO [decode_test.py:497] batch 7600/?, cuts processed until now is 18945
|
| 524 |
+
2022-04-09 04:22:44,642 INFO [decode_test.py:497] batch 7700/?, cuts processed until now is 19084
|
| 525 |
+
2022-04-09 04:23:18,184 INFO [decode.py:841] Caught exception:
|
| 526 |
+
CUDA out of memory. Tried to allocate 1.26 GiB (GPU 0; 31.75 GiB total capacity; 27.36 GiB already allocated; 881.75 MiB free; 29.53 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 527 |
+
|
| 528 |
+
2022-04-09 04:23:18,184 INFO [decode.py:843] num_paths before decreasing: 1000
|
| 529 |
+
2022-04-09 04:23:18,184 INFO [decode.py:852] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 530 |
+
2022-04-09 04:23:18,184 INFO [decode.py:858] num_paths after decreasing: 500
|
| 531 |
+
2022-04-09 04:24:52,959 INFO [decode.py:736] Caught exception:
|
| 532 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.53 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 533 |
+
|
| 534 |
+
2022-04-09 04:24:52,960 INFO [decode.py:743] num_arcs before pruning: 624026
|
| 535 |
+
2022-04-09 04:24:52,960 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 536 |
+
2022-04-09 04:24:52,972 INFO [decode.py:757] num_arcs after pruning: 10008
|
| 537 |
+
2022-04-09 04:25:07,718 INFO [decode_test.py:497] batch 7800/?, cuts processed until now is 19232
|
| 538 |
+
2022-04-09 04:25:31,876 INFO [decode.py:736] Caught exception:
|
| 539 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.51 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 540 |
+
|
| 541 |
+
2022-04-09 04:25:31,876 INFO [decode.py:743] num_arcs before pruning: 688909
|
| 542 |
+
2022-04-09 04:25:31,877 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 543 |
+
2022-04-09 04:25:31,887 INFO [decode.py:757] num_arcs after pruning: 8886
|
| 544 |
+
2022-04-09 04:25:57,970 INFO [decode.py:736] Caught exception:
|
| 545 |
+
CUDA out of memory. Tried to allocate 5.04 GiB (GPU 0; 31.75 GiB total capacity; 25.95 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 546 |
+
|
| 547 |
+
2022-04-09 04:25:57,971 INFO [decode.py:743] num_arcs before pruning: 891176
|
| 548 |
+
2022-04-09 04:25:57,971 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 549 |
+
2022-04-09 04:25:57,982 INFO [decode.py:757] num_arcs after pruning: 10106
|
| 550 |
+
2022-04-09 04:26:19,609 INFO [decode.py:736] Caught exception:
|
| 551 |
+
CUDA out of memory. Tried to allocate 2.63 GiB (GPU 0; 31.75 GiB total capacity; 27.60 GiB already allocated; 327.75 MiB free; 30.07 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 552 |
+
|
| 553 |
+
2022-04-09 04:26:19,609 INFO [decode.py:743] num_arcs before pruning: 415376
|
| 554 |
+
2022-04-09 04:26:19,609 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 555 |
+
2022-04-09 04:26:19,620 INFO [decode.py:757] num_arcs after pruning: 7771
|
| 556 |
+
2022-04-09 04:27:33,059 INFO [decode_test.py:497] batch 7900/?, cuts processed until now is 19375
|
| 557 |
+
2022-04-09 04:29:43,649 INFO [decode_test.py:497] batch 8000/?, cuts processed until now is 19510
|
| 558 |
+
2022-04-09 04:30:20,590 INFO [decode.py:736] Caught exception:
|
| 559 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.65 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 560 |
+
|
| 561 |
+
2022-04-09 04:30:20,591 INFO [decode.py:743] num_arcs before pruning: 330767
|
| 562 |
+
2022-04-09 04:30:20,591 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 563 |
+
2022-04-09 04:30:20,606 INFO [decode.py:757] num_arcs after pruning: 5820
|
| 564 |
+
2022-04-09 04:31:55,818 INFO [decode_test.py:497] batch 8100/?, cuts processed until now is 19643
|
| 565 |
+
2022-04-09 04:34:11,720 INFO [decode_test.py:497] batch 8200/?, cuts processed until now is 19776
|
| 566 |
+
2022-04-09 04:35:04,147 INFO [decode.py:736] Caught exception:
|
| 567 |
+
CUDA out of memory. Tried to allocate 4.49 GiB (GPU 0; 31.75 GiB total capacity; 24.38 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 568 |
+
|
| 569 |
+
2022-04-09 04:35:04,147 INFO [decode.py:743] num_arcs before pruning: 533967
|
| 570 |
+
2022-04-09 04:35:04,147 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 571 |
+
2022-04-09 04:35:04,157 INFO [decode.py:757] num_arcs after pruning: 3449
|
| 572 |
+
2022-04-09 04:36:15,595 INFO [decode.py:736] Caught exception:
|
| 573 |
+
CUDA out of memory. Tried to allocate 8.00 GiB (GPU 0; 31.75 GiB total capacity; 19.67 GiB already allocated; 2.12 GiB free; 28.27 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
| 574 |
+
|
| 575 |
+
2022-04-09 04:36:15,595 INFO [decode.py:743] num_arcs before pruning: 397138
|
| 576 |
+
2022-04-09 04:36:15,596 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 577 |
+
2022-04-09 04:36:15,605 INFO [decode.py:757] num_arcs after pruning: 6775
|
| 578 |
+
2022-04-09 04:36:31,844 INFO [decode_test.py:497] batch 8300/?, cuts processed until now is 19882
|
| 579 |
+
2022-04-09 04:37:04,130 INFO [decode.py:736] Caught exception:
|
| 580 |
+
|
| 581 |
+
Some bad things happened. Please read the above error messages and stack
|
| 582 |
+
trace. If you are using Python, the following command may be helpful:
|
| 583 |
+
|
| 584 |
+
gdb --args python /path/to/your/code.py
|
| 585 |
+
|
| 586 |
+
(You can use `gdb` to debug the code. Please consider compiling
|
| 587 |
+
a debug version of k2.).
|
| 588 |
+
|
| 589 |
+
If you are unable to fix it, please open an issue at:
|
| 590 |
+
|
| 591 |
+
https://github.com/k2-fsa/k2/issues/new
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
2022-04-09 04:37:04,130 INFO [decode.py:743] num_arcs before pruning: 456591
|
| 595 |
+
2022-04-09 04:37:04,130 INFO [decode.py:746] This OOM is not an error. You can ignore it. If your model does not converge well, or --max-duration is too large, or the input sound file is difficult to decode, you will meet this exception.
|
| 596 |
+
2022-04-09 04:37:04,180 INFO [decode.py:757] num_arcs after pruning: 5275
|
| 597 |
+
2022-04-09 04:57:33,432 INFO [decode_test.py:567]
|
| 598 |
+
For test, WER of different settings are:
|
| 599 |
+
ngram_lm_scale_0.3_attention_scale_0.7 10.58 best for test
|
| 600 |
+
ngram_lm_scale_0.5_attention_scale_1.3 10.58
|
| 601 |
+
ngram_lm_scale_0.3_attention_scale_0.5 10.59
|
| 602 |
+
ngram_lm_scale_0.3_attention_scale_0.6 10.59
|
| 603 |
+
ngram_lm_scale_0.3_attention_scale_0.9 10.59
|
| 604 |
+
ngram_lm_scale_0.3_attention_scale_1.0 10.59
|
| 605 |
+
ngram_lm_scale_0.3_attention_scale_1.1 10.59
|
| 606 |
+
ngram_lm_scale_0.3_attention_scale_1.2 10.59
|
| 607 |
+
ngram_lm_scale_0.3_attention_scale_1.3 10.59
|
| 608 |
+
ngram_lm_scale_0.5_attention_scale_1.0 10.59
|
| 609 |
+
ngram_lm_scale_0.5_attention_scale_1.1 10.59
|
| 610 |
+
ngram_lm_scale_0.5_attention_scale_1.2 10.59
|
| 611 |
+
ngram_lm_scale_0.5_attention_scale_1.5 10.59
|
| 612 |
+
ngram_lm_scale_0.5_attention_scale_1.7 10.59
|
| 613 |
+
ngram_lm_scale_0.5_attention_scale_1.9 10.59
|
| 614 |
+
ngram_lm_scale_0.5_attention_scale_2.0 10.59
|
| 615 |
+
ngram_lm_scale_0.5_attention_scale_2.1 10.59
|
| 616 |
+
ngram_lm_scale_0.5_attention_scale_2.2 10.59
|
| 617 |
+
ngram_lm_scale_0.5_attention_scale_2.3 10.59
|
| 618 |
+
ngram_lm_scale_0.6_attention_scale_1.9 10.59
|
| 619 |
+
ngram_lm_scale_0.6_attention_scale_2.0 10.59
|
| 620 |
+
ngram_lm_scale_0.6_attention_scale_2.1 10.59
|
| 621 |
+
ngram_lm_scale_0.6_attention_scale_2.2 10.59
|
| 622 |
+
ngram_lm_scale_0.6_attention_scale_2.3 10.59
|
| 623 |
+
ngram_lm_scale_0.6_attention_scale_2.5 10.59
|
| 624 |
+
ngram_lm_scale_0.3_attention_scale_1.5 10.6
|
| 625 |
+
ngram_lm_scale_0.3_attention_scale_1.7 10.6
|
| 626 |
+
ngram_lm_scale_0.3_attention_scale_1.9 10.6
|
| 627 |
+
ngram_lm_scale_0.3_attention_scale_2.0 10.6
|
| 628 |
+
ngram_lm_scale_0.3_attention_scale_2.1 10.6
|
| 629 |
+
ngram_lm_scale_0.3_attention_scale_2.2 10.6
|
| 630 |
+
ngram_lm_scale_0.3_attention_scale_2.3 10.6
|
| 631 |
+
ngram_lm_scale_0.3_attention_scale_2.5 10.6
|
| 632 |
+
ngram_lm_scale_0.5_attention_scale_0.9 10.6
|
| 633 |
+
ngram_lm_scale_0.5_attention_scale_2.5 10.6
|
| 634 |
+
ngram_lm_scale_0.5_attention_scale_3.0 10.6
|
| 635 |
+
ngram_lm_scale_0.6_attention_scale_1.3 10.6
|
| 636 |
+
ngram_lm_scale_0.6_attention_scale_1.5 10.6
|
| 637 |
+
ngram_lm_scale_0.6_attention_scale_1.7 10.6
|
| 638 |
+
ngram_lm_scale_0.6_attention_scale_3.0 10.6
|
| 639 |
+
ngram_lm_scale_0.3_attention_scale_0.3 10.61
|
| 640 |
+
ngram_lm_scale_0.3_attention_scale_3.0 10.61
|
| 641 |
+
ngram_lm_scale_0.5_attention_scale_4.0 10.61
|
| 642 |
+
ngram_lm_scale_0.5_attention_scale_5.0 10.61
|
| 643 |
+
ngram_lm_scale_0.6_attention_scale_1.2 10.61
|
| 644 |
+
ngram_lm_scale_0.6_attention_scale_4.0 10.61
|
| 645 |
+
ngram_lm_scale_0.6_attention_scale_5.0 10.61
|
| 646 |
+
ngram_lm_scale_0.7_attention_scale_1.7 10.61
|
| 647 |
+
ngram_lm_scale_0.7_attention_scale_1.9 10.61
|
| 648 |
+
ngram_lm_scale_0.7_attention_scale_2.0 10.61
|
| 649 |
+
ngram_lm_scale_0.7_attention_scale_2.1 10.61
|
| 650 |
+
ngram_lm_scale_0.7_attention_scale_2.2 10.61
|
| 651 |
+
ngram_lm_scale_0.7_attention_scale_2.3 10.61
|
| 652 |
+
ngram_lm_scale_0.7_attention_scale_2.5 10.61
|
| 653 |
+
ngram_lm_scale_0.7_attention_scale_3.0 10.61
|
| 654 |
+
ngram_lm_scale_0.7_attention_scale_4.0 10.61
|
| 655 |
+
ngram_lm_scale_0.7_attention_scale_5.0 10.61
|
| 656 |
+
ngram_lm_scale_0.1_attention_scale_1.1 10.62
|
| 657 |
+
ngram_lm_scale_0.3_attention_scale_4.0 10.62
|
| 658 |
+
ngram_lm_scale_0.3_attention_scale_5.0 10.62
|
| 659 |
+
ngram_lm_scale_0.5_attention_scale_0.7 10.62
|
| 660 |
+
ngram_lm_scale_0.6_attention_scale_1.0 10.62
|
| 661 |
+
ngram_lm_scale_0.6_attention_scale_1.1 10.62
|
| 662 |
+
ngram_lm_scale_0.7_attention_scale_1.5 10.62
|
| 663 |
+
ngram_lm_scale_0.9_attention_scale_3.0 10.62
|
| 664 |
+
ngram_lm_scale_0.9_attention_scale_4.0 10.62
|
| 665 |
+
ngram_lm_scale_0.9_attention_scale_5.0 10.62
|
| 666 |
+
ngram_lm_scale_1.0_attention_scale_4.0 10.62
|
| 667 |
+
ngram_lm_scale_1.1_attention_scale_5.0 10.62
|
| 668 |
+
ngram_lm_scale_0.05_attention_scale_1.1 10.63
|
| 669 |
+
ngram_lm_scale_0.05_attention_scale_1.2 10.63
|
| 670 |
+
ngram_lm_scale_0.08_attention_scale_0.9 10.63
|
| 671 |
+
ngram_lm_scale_0.08_attention_scale_1.0 10.63
|
| 672 |
+
ngram_lm_scale_0.08_attention_scale_1.1 10.63
|
| 673 |
+
ngram_lm_scale_0.08_attention_scale_1.2 10.63
|
| 674 |
+
ngram_lm_scale_0.08_attention_scale_1.3 10.63
|
| 675 |
+
ngram_lm_scale_0.08_attention_scale_1.9 10.63
|
| 676 |
+
ngram_lm_scale_0.08_attention_scale_2.0 10.63
|
| 677 |
+
ngram_lm_scale_0.08_attention_scale_2.1 10.63
|
| 678 |
+
ngram_lm_scale_0.08_attention_scale_2.2 10.63
|
| 679 |
+
ngram_lm_scale_0.08_attention_scale_2.3 10.63
|
| 680 |
+
ngram_lm_scale_0.08_attention_scale_3.0 10.63
|
| 681 |
+
ngram_lm_scale_0.1_attention_scale_0.5 10.63
|
| 682 |
+
ngram_lm_scale_0.1_attention_scale_0.6 10.63
|
| 683 |
+
ngram_lm_scale_0.1_attention_scale_0.7 10.63
|
| 684 |
+
ngram_lm_scale_0.1_attention_scale_0.9 10.63
|
| 685 |
+
ngram_lm_scale_0.1_attention_scale_1.0 10.63
|
| 686 |
+
ngram_lm_scale_0.1_attention_scale_1.2 10.63
|
| 687 |
+
ngram_lm_scale_0.1_attention_scale_1.3 10.63
|
| 688 |
+
ngram_lm_scale_0.1_attention_scale_1.7 10.63
|
| 689 |
+
ngram_lm_scale_0.1_attention_scale_1.9 10.63
|
| 690 |
+
ngram_lm_scale_0.1_attention_scale_2.0 10.63
|
| 691 |
+
ngram_lm_scale_0.1_attention_scale_2.1 10.63
|
| 692 |
+
ngram_lm_scale_0.1_attention_scale_2.2 10.63
|
| 693 |
+
ngram_lm_scale_0.1_attention_scale_2.3 10.63
|
| 694 |
+
ngram_lm_scale_0.1_attention_scale_2.5 10.63
|
| 695 |
+
ngram_lm_scale_0.1_attention_scale_3.0 10.63
|
| 696 |
+
ngram_lm_scale_0.1_attention_scale_5.0 10.63
|
| 697 |
+
ngram_lm_scale_0.5_attention_scale_0.6 10.63
|
| 698 |
+
ngram_lm_scale_0.6_attention_scale_0.9 10.63
|
| 699 |
+
ngram_lm_scale_0.9_attention_scale_2.3 10.63
|
| 700 |
+
ngram_lm_scale_0.9_attention_scale_2.5 10.63
|
| 701 |
+
ngram_lm_scale_1.0_attention_scale_5.0 10.63
|
| 702 |
+
ngram_lm_scale_1.2_attention_scale_5.0 10.63
|
| 703 |
+
ngram_lm_scale_0.01_attention_scale_0.9 10.64
|
| 704 |
+
ngram_lm_scale_0.01_attention_scale_1.0 10.64
|
| 705 |
+
ngram_lm_scale_0.01_attention_scale_1.1 10.64
|
| 706 |
+
ngram_lm_scale_0.01_attention_scale_1.2 10.64
|
| 707 |
+
ngram_lm_scale_0.01_attention_scale_4.0 10.64
|
| 708 |
+
ngram_lm_scale_0.01_attention_scale_5.0 10.64
|
| 709 |
+
ngram_lm_scale_0.05_attention_scale_0.5 10.64
|
| 710 |
+
ngram_lm_scale_0.05_attention_scale_0.6 10.64
|
| 711 |
+
ngram_lm_scale_0.05_attention_scale_0.7 10.64
|
| 712 |
+
ngram_lm_scale_0.05_attention_scale_0.9 10.64
|
| 713 |
+
ngram_lm_scale_0.05_attention_scale_1.0 10.64
|
| 714 |
+
ngram_lm_scale_0.05_attention_scale_1.3 10.64
|
| 715 |
+
ngram_lm_scale_0.05_attention_scale_1.5 10.64
|
| 716 |
+
ngram_lm_scale_0.05_attention_scale_1.7 10.64
|
| 717 |
+
ngram_lm_scale_0.05_attention_scale_1.9 10.64
|
| 718 |
+
ngram_lm_scale_0.05_attention_scale_2.0 10.64
|
| 719 |
+
ngram_lm_scale_0.05_attention_scale_2.1 10.64
|
| 720 |
+
ngram_lm_scale_0.05_attention_scale_2.2 10.64
|
| 721 |
+
ngram_lm_scale_0.05_attention_scale_2.3 10.64
|
| 722 |
+
ngram_lm_scale_0.05_attention_scale_2.5 10.64
|
| 723 |
+
ngram_lm_scale_0.05_attention_scale_3.0 10.64
|
| 724 |
+
ngram_lm_scale_0.05_attention_scale_4.0 10.64
|
| 725 |
+
ngram_lm_scale_0.05_attention_scale_5.0 10.64
|
| 726 |
+
ngram_lm_scale_0.08_attention_scale_0.5 10.64
|
| 727 |
+
ngram_lm_scale_0.08_attention_scale_0.6 10.64
|
| 728 |
+
ngram_lm_scale_0.08_attention_scale_0.7 10.64
|
| 729 |
+
ngram_lm_scale_0.08_attention_scale_1.5 10.64
|
| 730 |
+
ngram_lm_scale_0.08_attention_scale_1.7 10.64
|
| 731 |
+
ngram_lm_scale_0.08_attention_scale_2.5 10.64
|
| 732 |
+
ngram_lm_scale_0.08_attention_scale_4.0 10.64
|
| 733 |
+
ngram_lm_scale_0.08_attention_scale_5.0 10.64
|
| 734 |
+
ngram_lm_scale_0.1_attention_scale_0.3 10.64
|
| 735 |
+
ngram_lm_scale_0.1_attention_scale_1.5 10.64
|
| 736 |
+
ngram_lm_scale_0.1_attention_scale_4.0 10.64
|
| 737 |
+
ngram_lm_scale_0.7_attention_scale_1.3 10.64
|
| 738 |
+
ngram_lm_scale_0.9_attention_scale_2.2 10.64
|
| 739 |
+
ngram_lm_scale_1.0_attention_scale_3.0 10.64
|
| 740 |
+
ngram_lm_scale_1.1_attention_scale_4.0 10.64
|
| 741 |
+
ngram_lm_scale_1.3_attention_scale_5.0 10.64
|
| 742 |
+
ngram_lm_scale_0.01_attention_scale_0.6 10.65
|
| 743 |
+
ngram_lm_scale_0.01_attention_scale_0.7 10.65
|
| 744 |
+
ngram_lm_scale_0.01_attention_scale_1.3 10.65
|
| 745 |
+
ngram_lm_scale_0.01_attention_scale_1.5 10.65
|
| 746 |
+
ngram_lm_scale_0.01_attention_scale_1.7 10.65
|
| 747 |
+
ngram_lm_scale_0.01_attention_scale_1.9 10.65
|
| 748 |
+
ngram_lm_scale_0.01_attention_scale_2.0 10.65
|
| 749 |
+
ngram_lm_scale_0.01_attention_scale_2.1 10.65
|
| 750 |
+
ngram_lm_scale_0.01_attention_scale_2.2 10.65
|
| 751 |
+
ngram_lm_scale_0.01_attention_scale_2.3 10.65
|
| 752 |
+
ngram_lm_scale_0.01_attention_scale_2.5 10.65
|
| 753 |
+
ngram_lm_scale_0.01_attention_scale_3.0 10.65
|
| 754 |
+
ngram_lm_scale_0.08_attention_scale_0.3 10.65
|
| 755 |
+
ngram_lm_scale_0.5_attention_scale_0.5 10.65
|
| 756 |
+
ngram_lm_scale_0.6_attention_scale_0.7 10.65
|
| 757 |
+
ngram_lm_scale_0.7_attention_scale_1.1 10.65
|
| 758 |
+
ngram_lm_scale_0.7_attention_scale_1.2 10.65
|
| 759 |
+
ngram_lm_scale_0.9_attention_scale_2.1 10.65
|
| 760 |
+
ngram_lm_scale_1.2_attention_scale_4.0 10.65
|
| 761 |
+
ngram_lm_scale_0.05_attention_scale_0.3 10.66
|
| 762 |
+
ngram_lm_scale_0.7_attention_scale_1.0 10.66
|
| 763 |
+
ngram_lm_scale_0.9_attention_scale_1.9 10.66
|
| 764 |
+
ngram_lm_scale_0.9_attention_scale_2.0 10.66
|
| 765 |
+
ngram_lm_scale_1.0_attention_scale_2.5 10.66
|
| 766 |
+
ngram_lm_scale_1.1_attention_scale_3.0 10.66
|
| 767 |
+
ngram_lm_scale_0.01_attention_scale_0.5 10.67
|
| 768 |
+
ngram_lm_scale_0.1_attention_scale_0.08 10.67
|
| 769 |
+
ngram_lm_scale_0.1_attention_scale_0.1 10.67
|
| 770 |
+
ngram_lm_scale_0.6_attention_scale_0.6 10.67
|
| 771 |
+
ngram_lm_scale_0.9_attention_scale_1.7 10.67
|
| 772 |
+
ngram_lm_scale_1.0_attention_scale_2.2 10.67
|
| 773 |
+
ngram_lm_scale_1.0_attention_scale_2.3 10.67
|
| 774 |
+
ngram_lm_scale_1.3_attention_scale_4.0 10.67
|
| 775 |
+
ngram_lm_scale_1.5_attention_scale_5.0 10.67
|
| 776 |
+
ngram_lm_scale_0.01_attention_scale_0.3 10.68
|
| 777 |
+
ngram_lm_scale_0.08_attention_scale_0.08 10.68
|
| 778 |
+
ngram_lm_scale_0.08_attention_scale_0.1 10.68
|
| 779 |
+
ngram_lm_scale_0.3_attention_scale_0.08 10.68
|
| 780 |
+
ngram_lm_scale_0.3_attention_scale_0.1 10.68
|
| 781 |
+
ngram_lm_scale_0.7_attention_scale_0.9 10.68
|
| 782 |
+
ngram_lm_scale_1.0_attention_scale_2.0 10.68
|
| 783 |
+
ngram_lm_scale_1.0_attention_scale_2.1 10.68
|
| 784 |
+
ngram_lm_scale_1.1_attention_scale_2.5 10.68
|
| 785 |
+
ngram_lm_scale_1.2_attention_scale_3.0 10.68
|
| 786 |
+
ngram_lm_scale_0.1_attention_scale_0.05 10.69
|
| 787 |
+
ngram_lm_scale_0.5_attention_scale_0.3 10.69
|
| 788 |
+
ngram_lm_scale_0.9_attention_scale_1.5 10.69
|
| 789 |
+
ngram_lm_scale_1.0_attention_scale_1.9 10.69
|
| 790 |
+
ngram_lm_scale_1.1_attention_scale_2.3 10.69
|
| 791 |
+
ngram_lm_scale_0.05_attention_scale_0.1 10.7
|
| 792 |
+
ngram_lm_scale_0.08_attention_scale_0.05 10.7
|
| 793 |
+
ngram_lm_scale_0.3_attention_scale_0.05 10.7
|
| 794 |
+
ngram_lm_scale_0.6_attention_scale_0.5 10.7
|
| 795 |
+
ngram_lm_scale_1.1_attention_scale_2.2 10.7
|
| 796 |
+
ngram_lm_scale_1.5_attention_scale_4.0 10.7
|
| 797 |
+
ngram_lm_scale_1.7_attention_scale_5.0 10.7
|
| 798 |
+
ngram_lm_scale_0.05_attention_scale_0.08 10.71
|
| 799 |
+
ngram_lm_scale_1.1_attention_scale_2.1 10.71
|
| 800 |
+
ngram_lm_scale_1.2_attention_scale_2.5 10.71
|
| 801 |
+
ngram_lm_scale_1.3_attention_scale_3.0 10.71
|
| 802 |
+
ngram_lm_scale_0.01_attention_scale_0.1 10.72
|
| 803 |
+
ngram_lm_scale_0.05_attention_scale_0.05 10.72
|
| 804 |
+
ngram_lm_scale_0.08_attention_scale_0.01 10.72
|
| 805 |
+
ngram_lm_scale_0.1_attention_scale_0.01 10.72
|
| 806 |
+
ngram_lm_scale_0.3_attention_scale_0.01 10.72
|
| 807 |
+
ngram_lm_scale_0.7_attention_scale_0.7 10.72
|
| 808 |
+
ngram_lm_scale_0.9_attention_scale_1.3 10.72
|
| 809 |
+
ngram_lm_scale_1.0_attention_scale_1.7 10.72
|
| 810 |
+
ngram_lm_scale_1.1_attention_scale_2.0 10.72
|
| 811 |
+
ngram_lm_scale_0.01_attention_scale_0.08 10.73
|
| 812 |
+
ngram_lm_scale_0.9_attention_scale_1.2 10.73
|
| 813 |
+
ngram_lm_scale_1.1_attention_scale_1.9 10.73
|
| 814 |
+
ngram_lm_scale_1.2_attention_scale_2.3 10.73
|
| 815 |
+
ngram_lm_scale_1.0_attention_scale_1.5 10.74
|
| 816 |
+
ngram_lm_scale_1.2_attention_scale_2.2 10.74
|
| 817 |
+
ngram_lm_scale_1.3_attention_scale_2.5 10.74
|
| 818 |
+
ngram_lm_scale_1.9_attention_scale_5.0 10.74
|
| 819 |
+
ngram_lm_scale_0.01_attention_scale_0.05 10.75
|
| 820 |
+
ngram_lm_scale_0.05_attention_scale_0.01 10.75
|
| 821 |
+
ngram_lm_scale_0.7_attention_scale_0.6 10.75
|
| 822 |
+
ngram_lm_scale_0.9_attention_scale_1.1 10.75
|
| 823 |
+
ngram_lm_scale_1.1_attention_scale_1.7 10.75
|
| 824 |
+
ngram_lm_scale_1.2_attention_scale_2.1 10.75
|
| 825 |
+
ngram_lm_scale_1.7_attention_scale_4.0 10.75
|
| 826 |
+
ngram_lm_scale_1.2_attention_scale_2.0 10.76
|
| 827 |
+
ngram_lm_scale_1.3_attention_scale_2.3 10.76
|
| 828 |
+
ngram_lm_scale_2.0_attention_scale_5.0 10.76
|
| 829 |
+
ngram_lm_scale_1.0_attention_scale_1.3 10.77
|
| 830 |
+
ngram_lm_scale_1.2_attention_scale_1.9 10.77
|
| 831 |
+
ngram_lm_scale_1.5_attention_scale_3.0 10.77
|
| 832 |
+
ngram_lm_scale_0.01_attention_scale_0.01 10.78
|
| 833 |
+
ngram_lm_scale_0.6_attention_scale_0.3 10.78
|
| 834 |
+
ngram_lm_scale_0.7_attention_scale_0.5 10.78
|
| 835 |
+
ngram_lm_scale_0.9_attention_scale_1.0 10.78
|
| 836 |
+
ngram_lm_scale_2.1_attention_scale_5.0 10.78
|
| 837 |
+
ngram_lm_scale_1.1_attention_scale_1.5 10.79
|
| 838 |
+
ngram_lm_scale_1.3_attention_scale_2.2 10.79
|
| 839 |
+
ngram_lm_scale_0.5_attention_scale_0.1 10.8
|
| 840 |
+
ngram_lm_scale_1.0_attention_scale_1.2 10.8
|
| 841 |
+
ngram_lm_scale_1.3_attention_scale_2.1 10.8
|
| 842 |
+
ngram_lm_scale_1.9_attention_scale_4.0 10.8
|
| 843 |
+
ngram_lm_scale_2.2_attention_scale_5.0 10.8
|
| 844 |
+
ngram_lm_scale_0.5_attention_scale_0.08 10.81
|
| 845 |
+
ngram_lm_scale_0.9_attention_scale_0.9 10.81
|
| 846 |
+
ngram_lm_scale_1.2_attention_scale_1.7 10.81
|
| 847 |
+
ngram_lm_scale_1.3_attention_scale_2.0 10.81
|
| 848 |
+
ngram_lm_scale_1.0_attention_scale_1.1 10.82
|
| 849 |
+
ngram_lm_scale_0.5_attention_scale_0.05 10.83
|
| 850 |
+
ngram_lm_scale_1.1_attention_scale_1.3 10.83
|
| 851 |
+
ngram_lm_scale_1.3_attention_scale_1.9 10.83
|
| 852 |
+
ngram_lm_scale_1.5_attention_scale_2.5 10.84
|
| 853 |
+
ngram_lm_scale_2.3_attention_scale_5.0 10.84
|
| 854 |
+
ngram_lm_scale_1.0_attention_scale_1.0 10.85
|
| 855 |
+
ngram_lm_scale_1.2_attention_scale_1.5 10.85
|
| 856 |
+
ngram_lm_scale_2.0_attention_scale_4.0 10.85
|
| 857 |
+
ngram_lm_scale_1.1_attention_scale_1.2 10.86
|
| 858 |
+
ngram_lm_scale_1.7_attention_scale_3.0 10.86
|
| 859 |
+
ngram_lm_scale_0.5_attention_scale_0.01 10.87
|
| 860 |
+
ngram_lm_scale_1.5_attention_scale_2.3 10.87
|
| 861 |
+
ngram_lm_scale_0.7_attention_scale_0.3 10.88
|
| 862 |
+
ngram_lm_scale_0.9_attention_scale_0.7 10.88
|
| 863 |
+
ngram_lm_scale_1.3_attention_scale_1.7 10.88
|
| 864 |
+
ngram_lm_scale_1.0_attention_scale_0.9 10.89
|
| 865 |
+
ngram_lm_scale_1.5_attention_scale_2.2 10.89
|
| 866 |
+
ngram_lm_scale_2.1_attention_scale_4.0 10.89
|
| 867 |
+
ngram_lm_scale_1.1_attention_scale_1.1 10.91
|
| 868 |
+
ngram_lm_scale_0.6_attention_scale_0.1 10.92
|
| 869 |
+
ngram_lm_scale_0.9_attention_scale_0.6 10.92
|
| 870 |
+
ngram_lm_scale_1.5_attention_scale_2.1 10.92
|
| 871 |
+
ngram_lm_scale_1.2_attention_scale_1.3 10.93
|
| 872 |
+
ngram_lm_scale_2.5_attention_scale_5.0 10.93
|
| 873 |
+
ngram_lm_scale_0.6_attention_scale_0.08 10.94
|
| 874 |
+
ngram_lm_scale_2.2_attention_scale_4.0 10.94
|
| 875 |
+
ngram_lm_scale_1.1_attention_scale_1.0 10.95
|
| 876 |
+
ngram_lm_scale_1.3_attention_scale_1.5 10.95
|
| 877 |
+
ngram_lm_scale_1.5_attention_scale_2.0 10.96
|
| 878 |
+
ngram_lm_scale_1.2_attention_scale_1.2 10.97
|
| 879 |
+
ngram_lm_scale_1.7_attention_scale_2.5 10.97
|
| 880 |
+
ngram_lm_scale_0.6_attention_scale_0.05 10.98
|
| 881 |
+
ngram_lm_scale_1.9_attention_scale_3.0 10.98
|
| 882 |
+
ngram_lm_scale_1.0_attention_scale_0.7 10.99
|
| 883 |
+
ngram_lm_scale_1.5_attention_scale_1.9 10.99
|
| 884 |
+
ngram_lm_scale_2.3_attention_scale_4.0 10.99
|
| 885 |
+
ngram_lm_scale_0.9_attention_scale_0.5 11.0
|
| 886 |
+
ngram_lm_scale_1.1_attention_scale_0.9 11.0
|
| 887 |
+
ngram_lm_scale_0.6_attention_scale_0.01 11.02
|
| 888 |
+
ngram_lm_scale_1.2_attention_scale_1.1 11.02
|
| 889 |
+
ngram_lm_scale_1.7_attention_scale_2.3 11.03
|
| 890 |
+
ngram_lm_scale_1.3_attention_scale_1.3 11.05
|
| 891 |
+
ngram_lm_scale_2.0_attention_scale_3.0 11.05
|
| 892 |
+
ngram_lm_scale_1.7_attention_scale_2.2 11.07
|
| 893 |
+
ngram_lm_scale_1.0_attention_scale_0.6 11.08
|
| 894 |
+
ngram_lm_scale_1.5_attention_scale_1.7 11.08
|
| 895 |
+
ngram_lm_scale_1.2_attention_scale_1.0 11.09
|
| 896 |
+
ngram_lm_scale_0.7_attention_scale_0.1 11.1
|
| 897 |
+
ngram_lm_scale_1.3_attention_scale_1.2 11.1
|
| 898 |
+
ngram_lm_scale_1.7_attention_scale_2.1 11.11
|
| 899 |
+
ngram_lm_scale_2.1_attention_scale_3.0 11.12
|
| 900 |
+
ngram_lm_scale_2.5_attention_scale_4.0 11.12
|
| 901 |
+
ngram_lm_scale_0.7_attention_scale_0.08 11.13
|
| 902 |
+
ngram_lm_scale_1.9_attention_scale_2.5 11.13
|
| 903 |
+
ngram_lm_scale_1.7_attention_scale_2.0 11.14
|
| 904 |
+
ngram_lm_scale_1.2_attention_scale_0.9 11.16
|
| 905 |
+
ngram_lm_scale_1.1_attention_scale_0.7 11.17
|
| 906 |
+
ngram_lm_scale_1.3_attention_scale_1.1 11.17
|
| 907 |
+
ngram_lm_scale_3.0_attention_scale_5.0 11.17
|
| 908 |
+
ngram_lm_scale_0.7_attention_scale_0.05 11.18
|
| 909 |
+
ngram_lm_scale_1.5_attention_scale_1.5 11.18
|
| 910 |
+
ngram_lm_scale_1.0_attention_scale_0.5 11.19
|
| 911 |
+
ngram_lm_scale_1.7_attention_scale_1.9 11.2
|
| 912 |
+
ngram_lm_scale_2.2_attention_scale_3.0 11.21
|
| 913 |
+
ngram_lm_scale_1.9_attention_scale_2.3 11.22
|
| 914 |
+
ngram_lm_scale_2.0_attention_scale_2.5 11.23
|
| 915 |
+
ngram_lm_scale_0.9_attention_scale_0.3 11.25
|
| 916 |
+
ngram_lm_scale_1.3_attention_scale_1.0 11.26
|
| 917 |
+
ngram_lm_scale_0.7_attention_scale_0.01 11.27
|
| 918 |
+
ngram_lm_scale_1.9_attention_scale_2.2 11.27
|
| 919 |
+
ngram_lm_scale_1.1_attention_scale_0.6 11.29
|
| 920 |
+
ngram_lm_scale_2.3_attention_scale_3.0 11.31
|
| 921 |
+
ngram_lm_scale_1.7_attention_scale_1.7 11.33
|
| 922 |
+
ngram_lm_scale_1.5_attention_scale_1.3 11.34
|
| 923 |
+
ngram_lm_scale_1.9_attention_scale_2.1 11.34
|
| 924 |
+
ngram_lm_scale_2.0_attention_scale_2.3 11.34
|
| 925 |
+
ngram_lm_scale_2.1_attention_scale_2.5 11.35
|
| 926 |
+
ngram_lm_scale_1.3_attention_scale_0.9 11.36
|
| 927 |
+
ngram_lm_scale_1.2_attention_scale_0.7 11.39
|
| 928 |
+
ngram_lm_scale_1.9_attention_scale_2.0 11.4
|
| 929 |
+
ngram_lm_scale_2.0_attention_scale_2.2 11.4
|
| 930 |
+
ngram_lm_scale_1.5_attention_scale_1.2 11.43
|
| 931 |
+
ngram_lm_scale_1.1_attention_scale_0.5 11.44
|
| 932 |
+
ngram_lm_scale_2.0_attention_scale_2.1 11.47
|
| 933 |
+
ngram_lm_scale_2.1_attention_scale_2.3 11.47
|
| 934 |
+
ngram_lm_scale_2.2_attention_scale_2.5 11.47
|
| 935 |
+
ngram_lm_scale_1.9_attention_scale_1.9 11.48
|
| 936 |
+
ngram_lm_scale_1.7_attention_scale_1.5 11.5
|
| 937 |
+
ngram_lm_scale_2.5_attention_scale_3.0 11.51
|
| 938 |
+
ngram_lm_scale_3.0_attention_scale_4.0 11.51
|
| 939 |
+
ngram_lm_scale_1.0_attention_scale_0.3 11.53
|
| 940 |
+
ngram_lm_scale_1.2_attention_scale_0.6 11.53
|
| 941 |
+
ngram_lm_scale_1.5_attention_scale_1.1 11.54
|
| 942 |
+
ngram_lm_scale_2.1_attention_scale_2.2 11.54
|
| 943 |
+
ngram_lm_scale_2.0_attention_scale_2.0 11.55
|
| 944 |
+
ngram_lm_scale_2.3_attention_scale_2.5 11.59
|
| 945 |
+
ngram_lm_scale_2.2_attention_scale_2.3 11.61
|
| 946 |
+
ngram_lm_scale_2.1_attention_scale_2.1 11.62
|
| 947 |
+
ngram_lm_scale_1.3_attention_scale_0.7 11.63
|
| 948 |
+
ngram_lm_scale_2.0_attention_scale_1.9 11.63
|
| 949 |
+
ngram_lm_scale_1.9_attention_scale_1.7 11.66
|
| 950 |
+
ngram_lm_scale_1.5_attention_scale_1.0 11.67
|
| 951 |
+
ngram_lm_scale_2.2_attention_scale_2.2 11.69
|
| 952 |
+
ngram_lm_scale_0.9_attention_scale_0.1 11.7
|
| 953 |
+
ngram_lm_scale_2.1_attention_scale_2.0 11.71
|
| 954 |
+
ngram_lm_scale_1.2_attention_scale_0.5 11.72
|
| 955 |
+
ngram_lm_scale_1.7_attention_scale_1.3 11.72
|
| 956 |
+
ngram_lm_scale_2.3_attention_scale_2.3 11.75
|
| 957 |
+
ngram_lm_scale_0.9_attention_scale_0.08 11.77
|
| 958 |
+
ngram_lm_scale_2.2_attention_scale_2.1 11.78
|
| 959 |
+
ngram_lm_scale_2.1_attention_scale_1.9 11.82
|
| 960 |
+
ngram_lm_scale_1.3_attention_scale_0.6 11.83
|
| 961 |
+
ngram_lm_scale_1.5_attention_scale_0.9 11.85
|
| 962 |
+
ngram_lm_scale_2.0_attention_scale_1.7 11.85
|
| 963 |
+
ngram_lm_scale_2.3_attention_scale_2.2 11.86
|
| 964 |
+
ngram_lm_scale_0.9_attention_scale_0.05 11.87
|
| 965 |
+
ngram_lm_scale_1.1_attention_scale_0.3 11.87
|
| 966 |
+
ngram_lm_scale_1.7_attention_scale_1.2 11.88
|
| 967 |
+
ngram_lm_scale_1.9_attention_scale_1.5 11.9
|
| 968 |
+
ngram_lm_scale_2.2_attention_scale_2.0 11.9
|
| 969 |
+
ngram_lm_scale_2.5_attention_scale_2.5 11.9
|
| 970 |
+
ngram_lm_scale_4.0_attention_scale_5.0 11.93
|
| 971 |
+
ngram_lm_scale_2.3_attention_scale_2.1 11.97
|
| 972 |
+
ngram_lm_scale_0.9_attention_scale_0.01 12.0
|
| 973 |
+
ngram_lm_scale_2.2_attention_scale_1.9 12.02
|
| 974 |
+
ngram_lm_scale_1.7_attention_scale_1.1 12.05
|
| 975 |
+
ngram_lm_scale_1.3_attention_scale_0.5 12.07
|
| 976 |
+
ngram_lm_scale_2.1_attention_scale_1.7 12.07
|
| 977 |
+
ngram_lm_scale_2.3_attention_scale_2.0 12.09
|
| 978 |
+
ngram_lm_scale_1.0_attention_scale_0.1 12.11
|
| 979 |
+
ngram_lm_scale_2.5_attention_scale_2.3 12.11
|
| 980 |
+
ngram_lm_scale_2.0_attention_scale_1.5 12.14
|
| 981 |
+
ngram_lm_scale_1.0_attention_scale_0.08 12.19
|
| 982 |
+
ngram_lm_scale_3.0_attention_scale_3.0 12.19
|
| 983 |
+
ngram_lm_scale_1.9_attention_scale_1.3 12.22
|
| 984 |
+
ngram_lm_scale_1.7_attention_scale_1.0 12.23
|
| 985 |
+
ngram_lm_scale_2.3_attention_scale_1.9 12.23
|
| 986 |
+
ngram_lm_scale_2.5_attention_scale_2.2 12.23
|
| 987 |
+
ngram_lm_scale_1.5_attention_scale_0.7 12.27
|
| 988 |
+
ngram_lm_scale_1.2_attention_scale_0.3 12.28
|
| 989 |
+
ngram_lm_scale_2.2_attention_scale_1.7 12.3
|
| 990 |
+
ngram_lm_scale_1.0_attention_scale_0.05 12.32
|
| 991 |
+
ngram_lm_scale_2.5_attention_scale_2.1 12.37
|
| 992 |
+
ngram_lm_scale_2.1_attention_scale_1.5 12.39
|
| 993 |
+
ngram_lm_scale_1.9_attention_scale_1.2 12.41
|
| 994 |
+
ngram_lm_scale_1.7_attention_scale_0.9 12.46
|
| 995 |
+
ngram_lm_scale_1.0_attention_scale_0.01 12.49
|
| 996 |
+
ngram_lm_scale_2.0_attention_scale_1.3 12.5
|
| 997 |
+
ngram_lm_scale_2.5_attention_scale_2.0 12.51
|
| 998 |
+
ngram_lm_scale_2.3_attention_scale_1.7 12.54
|
| 999 |
+
ngram_lm_scale_1.5_attention_scale_0.6 12.55
|
| 1000 |
+
ngram_lm_scale_1.1_attention_scale_0.1 12.58
|
| 1001 |
+
ngram_lm_scale_1.9_attention_scale_1.1 12.62
|
| 1002 |
+
ngram_lm_scale_2.2_attention_scale_1.5 12.64
|
| 1003 |
+
ngram_lm_scale_1.1_attention_scale_0.08 12.67
|
| 1004 |
+
ngram_lm_scale_2.5_attention_scale_1.9 12.67
|
| 1005 |
+
ngram_lm_scale_4.0_attention_scale_4.0 12.67
|
| 1006 |
+
ngram_lm_scale_1.3_attention_scale_0.3 12.71
|
| 1007 |
+
ngram_lm_scale_2.0_attention_scale_1.2 12.71
|
| 1008 |
+
ngram_lm_scale_2.1_attention_scale_1.3 12.78
|
| 1009 |
+
ngram_lm_scale_3.0_attention_scale_2.5 12.8
|
| 1010 |
+
ngram_lm_scale_1.1_attention_scale_0.05 12.81
|
| 1011 |
+
ngram_lm_scale_1.9_attention_scale_1.0 12.85
|
| 1012 |
+
ngram_lm_scale_1.5_attention_scale_0.5 12.86
|
| 1013 |
+
ngram_lm_scale_2.3_attention_scale_1.5 12.91
|
| 1014 |
+
ngram_lm_scale_2.0_attention_scale_1.1 12.92
|
| 1015 |
+
ngram_lm_scale_1.7_attention_scale_0.7 12.99
|
| 1016 |
+
ngram_lm_scale_2.1_attention_scale_1.2 12.99
|
| 1017 |
+
ngram_lm_scale_5.0_attention_scale_5.0 13.01
|
| 1018 |
+
ngram_lm_scale_1.1_attention_scale_0.01 13.02
|
| 1019 |
+
ngram_lm_scale_2.5_attention_scale_1.7 13.02
|
| 1020 |
+
ngram_lm_scale_2.2_attention_scale_1.3 13.05
|
| 1021 |
+
ngram_lm_scale_3.0_attention_scale_2.3 13.09
|
| 1022 |
+
ngram_lm_scale_1.2_attention_scale_0.1 13.1
|
| 1023 |
+
ngram_lm_scale_1.9_attention_scale_0.9 13.11
|
| 1024 |
+
ngram_lm_scale_2.0_attention_scale_1.0 13.17
|
| 1025 |
+
ngram_lm_scale_1.2_attention_scale_0.08 13.2
|
| 1026 |
+
ngram_lm_scale_2.1_attention_scale_1.1 13.22
|
| 1027 |
+
ngram_lm_scale_3.0_attention_scale_2.2 13.24
|
| 1028 |
+
ngram_lm_scale_2.2_attention_scale_1.2 13.28
|
| 1029 |
+
ngram_lm_scale_1.7_attention_scale_0.6 13.33
|
| 1030 |
+
ngram_lm_scale_2.3_attention_scale_1.3 13.34
|
| 1031 |
+
ngram_lm_scale_1.2_attention_scale_0.05 13.36
|
| 1032 |
+
ngram_lm_scale_3.0_attention_scale_2.1 13.42
|
| 1033 |
+
ngram_lm_scale_2.5_attention_scale_1.5 13.43
|
| 1034 |
+
ngram_lm_scale_2.0_attention_scale_0.9 13.48
|
| 1035 |
+
ngram_lm_scale_2.1_attention_scale_1.0 13.51
|
| 1036 |
+
ngram_lm_scale_2.2_attention_scale_1.1 13.56
|
| 1037 |
+
ngram_lm_scale_1.2_attention_scale_0.01 13.6
|
| 1038 |
+
ngram_lm_scale_2.3_attention_scale_1.2 13.6
|
| 1039 |
+
ngram_lm_scale_3.0_attention_scale_2.0 13.62
|
| 1040 |
+
ngram_lm_scale_1.3_attention_scale_0.1 13.65
|
| 1041 |
+
ngram_lm_scale_1.5_attention_scale_0.3 13.68
|
| 1042 |
+
ngram_lm_scale_1.7_attention_scale_0.5 13.72
|
| 1043 |
+
ngram_lm_scale_1.3_attention_scale_0.08 13.76
|
| 1044 |
+
ngram_lm_scale_1.9_attention_scale_0.7 13.78
|
| 1045 |
+
ngram_lm_scale_3.0_attention_scale_1.9 13.81
|
| 1046 |
+
ngram_lm_scale_2.1_attention_scale_0.9 13.82
|
| 1047 |
+
ngram_lm_scale_2.2_attention_scale_1.0 13.85
|
| 1048 |
+
ngram_lm_scale_4.0_attention_scale_3.0 13.85
|
| 1049 |
+
ngram_lm_scale_2.3_attention_scale_1.1 13.89
|
| 1050 |
+
ngram_lm_scale_1.3_attention_scale_0.05 13.94
|
| 1051 |
+
ngram_lm_scale_2.5_attention_scale_1.3 13.94
|
| 1052 |
+
ngram_lm_scale_5.0_attention_scale_4.0 13.97
|
| 1053 |
+
ngram_lm_scale_1.9_attention_scale_0.6 14.15
|
| 1054 |
+
ngram_lm_scale_2.0_attention_scale_0.7 14.16
|
| 1055 |
+
ngram_lm_scale_2.2_attention_scale_0.9 14.17
|
| 1056 |
+
ngram_lm_scale_2.3_attention_scale_1.0 14.19
|
| 1057 |
+
ngram_lm_scale_1.3_attention_scale_0.01 14.2
|
| 1058 |
+
ngram_lm_scale_2.5_attention_scale_1.2 14.2
|
| 1059 |
+
ngram_lm_scale_3.0_attention_scale_1.7 14.26
|
| 1060 |
+
ngram_lm_scale_2.5_attention_scale_1.1 14.48
|
| 1061 |
+
ngram_lm_scale_2.3_attention_scale_0.9 14.5
|
| 1062 |
+
ngram_lm_scale_2.1_attention_scale_0.7 14.53
|
| 1063 |
+
ngram_lm_scale_2.0_attention_scale_0.6 14.54
|
| 1064 |
+
ngram_lm_scale_1.9_attention_scale_0.5 14.57
|
| 1065 |
+
ngram_lm_scale_4.0_attention_scale_2.5 14.63
|
| 1066 |
+
ngram_lm_scale_1.7_attention_scale_0.3 14.64
|
| 1067 |
+
ngram_lm_scale_3.0_attention_scale_1.5 14.71
|
| 1068 |
+
ngram_lm_scale_1.5_attention_scale_0.1 14.75
|
| 1069 |
+
ngram_lm_scale_2.5_attention_scale_1.0 14.79
|
| 1070 |
+
ngram_lm_scale_2.2_attention_scale_0.7 14.86
|
| 1071 |
+
ngram_lm_scale_1.5_attention_scale_0.08 14.87
|
| 1072 |
+
ngram_lm_scale_2.1_attention_scale_0.6 14.91
|
| 1073 |
+
ngram_lm_scale_2.0_attention_scale_0.5 14.95
|
| 1074 |
+
ngram_lm_scale_4.0_attention_scale_2.3 14.98
|
| 1075 |
+
ngram_lm_scale_1.5_attention_scale_0.05 15.05
|
| 1076 |
+
ngram_lm_scale_2.5_attention_scale_0.9 15.12
|
| 1077 |
+
ngram_lm_scale_4.0_attention_scale_2.2 15.17
|
| 1078 |
+
ngram_lm_scale_2.3_attention_scale_0.7 15.21
|
| 1079 |
+
ngram_lm_scale_3.0_attention_scale_1.3 15.22
|
| 1080 |
+
ngram_lm_scale_2.2_attention_scale_0.6 15.27
|
| 1081 |
+
ngram_lm_scale_1.5_attention_scale_0.01 15.3
|
| 1082 |
+
ngram_lm_scale_5.0_attention_scale_3.0 15.32
|
| 1083 |
+
ngram_lm_scale_2.1_attention_scale_0.5 15.33
|
| 1084 |
+
ngram_lm_scale_4.0_attention_scale_2.1 15.37
|
| 1085 |
+
ngram_lm_scale_1.9_attention_scale_0.3 15.5
|
| 1086 |
+
ngram_lm_scale_3.0_attention_scale_1.2 15.51
|
| 1087 |
+
ngram_lm_scale_4.0_attention_scale_2.0 15.57
|
| 1088 |
+
ngram_lm_scale_2.3_attention_scale_0.6 15.61
|
| 1089 |
+
ngram_lm_scale_2.2_attention_scale_0.5 15.68
|
| 1090 |
+
ngram_lm_scale_1.7_attention_scale_0.1 15.72
|
| 1091 |
+
ngram_lm_scale_4.0_attention_scale_1.9 15.79
|
| 1092 |
+
ngram_lm_scale_3.0_attention_scale_1.1 15.82
|
| 1093 |
+
ngram_lm_scale_1.7_attention_scale_0.08 15.83
|
| 1094 |
+
ngram_lm_scale_2.5_attention_scale_0.7 15.85
|
| 1095 |
+
ngram_lm_scale_2.0_attention_scale_0.3 15.87
|
| 1096 |
+
ngram_lm_scale_2.3_attention_scale_0.5 16.0
|
| 1097 |
+
ngram_lm_scale_1.7_attention_scale_0.05 16.01
|
| 1098 |
+
ngram_lm_scale_3.0_attention_scale_1.0 16.11
|
| 1099 |
+
ngram_lm_scale_5.0_attention_scale_2.5 16.12
|
| 1100 |
+
ngram_lm_scale_2.5_attention_scale_0.6 16.19
|
| 1101 |
+
ngram_lm_scale_2.1_attention_scale_0.3 16.2
|
| 1102 |
+
ngram_lm_scale_4.0_attention_scale_1.7 16.22
|
| 1103 |
+
ngram_lm_scale_1.7_attention_scale_0.01 16.23
|
| 1104 |
+
ngram_lm_scale_3.0_attention_scale_0.9 16.4
|
| 1105 |
+
ngram_lm_scale_5.0_attention_scale_2.3 16.44
|
| 1106 |
+
ngram_lm_scale_1.9_attention_scale_0.1 16.5
|
| 1107 |
+
ngram_lm_scale_2.2_attention_scale_0.3 16.53
|
| 1108 |
+
ngram_lm_scale_2.5_attention_scale_0.5 16.54
|
| 1109 |
+
ngram_lm_scale_1.9_attention_scale_0.08 16.6
|
| 1110 |
+
ngram_lm_scale_5.0_attention_scale_2.2 16.6
|
| 1111 |
+
ngram_lm_scale_4.0_attention_scale_1.5 16.63
|
| 1112 |
+
ngram_lm_scale_1.9_attention_scale_0.05 16.74
|
| 1113 |
+
ngram_lm_scale_5.0_attention_scale_2.1 16.77
|
| 1114 |
+
ngram_lm_scale_2.3_attention_scale_0.3 16.81
|
| 1115 |
+
ngram_lm_scale_2.0_attention_scale_0.1 16.83
|
| 1116 |
+
ngram_lm_scale_2.0_attention_scale_0.08 16.92
|
| 1117 |
+
ngram_lm_scale_5.0_attention_scale_2.0 16.94
|
| 1118 |
+
ngram_lm_scale_1.9_attention_scale_0.01 16.95
|
| 1119 |
+
ngram_lm_scale_3.0_attention_scale_0.7 16.96
|
| 1120 |
+
ngram_lm_scale_2.0_attention_scale_0.05 17.05
|
| 1121 |
+
ngram_lm_scale_4.0_attention_scale_1.3 17.05
|
| 1122 |
+
ngram_lm_scale_2.1_attention_scale_0.1 17.11
|
| 1123 |
+
ngram_lm_scale_5.0_attention_scale_1.9 17.11
|
| 1124 |
+
ngram_lm_scale_2.1_attention_scale_0.08 17.21
|
| 1125 |
+
ngram_lm_scale_2.0_attention_scale_0.01 17.24
|
| 1126 |
+
ngram_lm_scale_3.0_attention_scale_0.6 17.26
|
| 1127 |
+
ngram_lm_scale_4.0_attention_scale_1.2 17.27
|
| 1128 |
+
ngram_lm_scale_2.5_attention_scale_0.3 17.28
|
| 1129 |
+
ngram_lm_scale_2.1_attention_scale_0.05 17.34
|
| 1130 |
+
ngram_lm_scale_2.2_attention_scale_0.1 17.38
|
| 1131 |
+
ngram_lm_scale_5.0_attention_scale_1.7 17.44
|
| 1132 |
+
ngram_lm_scale_2.2_attention_scale_0.08 17.46
|
| 1133 |
+
ngram_lm_scale_4.0_attention_scale_1.1 17.5
|
| 1134 |
+
ngram_lm_scale_2.1_attention_scale_0.01 17.52
|
| 1135 |
+
ngram_lm_scale_3.0_attention_scale_0.5 17.57
|
| 1136 |
+
ngram_lm_scale_2.2_attention_scale_0.05 17.59
|
| 1137 |
+
ngram_lm_scale_2.3_attention_scale_0.1 17.62
|
| 1138 |
+
ngram_lm_scale_2.3_attention_scale_0.08 17.7
|
| 1139 |
+
ngram_lm_scale_4.0_attention_scale_1.0 17.72
|
| 1140 |
+
ngram_lm_scale_2.2_attention_scale_0.01 17.76
|
| 1141 |
+
ngram_lm_scale_5.0_attention_scale_1.5 17.8
|
| 1142 |
+
ngram_lm_scale_2.3_attention_scale_0.05 17.82
|
| 1143 |
+
ngram_lm_scale_4.0_attention_scale_0.9 17.94
|
| 1144 |
+
ngram_lm_scale_2.3_attention_scale_0.01 17.98
|
| 1145 |
+
ngram_lm_scale_2.5_attention_scale_0.1 18.03
|
| 1146 |
+
ngram_lm_scale_2.5_attention_scale_0.08 18.1
|
| 1147 |
+
ngram_lm_scale_5.0_attention_scale_1.3 18.12
|
| 1148 |
+
ngram_lm_scale_3.0_attention_scale_0.3 18.17
|
| 1149 |
+
ngram_lm_scale_2.5_attention_scale_0.05 18.2
|
| 1150 |
+
ngram_lm_scale_5.0_attention_scale_1.2 18.29
|
| 1151 |
+
ngram_lm_scale_2.5_attention_scale_0.01 18.33
|
| 1152 |
+
ngram_lm_scale_4.0_attention_scale_0.7 18.36
|
| 1153 |
+
ngram_lm_scale_5.0_attention_scale_1.1 18.48
|
| 1154 |
+
ngram_lm_scale_4.0_attention_scale_0.6 18.58
|
| 1155 |
+
ngram_lm_scale_5.0_attention_scale_1.0 18.65
|
| 1156 |
+
ngram_lm_scale_3.0_attention_scale_0.1 18.75
|
| 1157 |
+
ngram_lm_scale_4.0_attention_scale_0.5 18.79
|
| 1158 |
+
ngram_lm_scale_3.0_attention_scale_0.08 18.81
|
| 1159 |
+
ngram_lm_scale_5.0_attention_scale_0.9 18.81
|
| 1160 |
+
ngram_lm_scale_3.0_attention_scale_0.05 18.89
|
| 1161 |
+
ngram_lm_scale_3.0_attention_scale_0.01 18.99
|
| 1162 |
+
ngram_lm_scale_5.0_attention_scale_0.7 19.11
|
| 1163 |
+
ngram_lm_scale_4.0_attention_scale_0.3 19.18
|
| 1164 |
+
ngram_lm_scale_5.0_attention_scale_0.6 19.25
|
| 1165 |
+
ngram_lm_scale_5.0_attention_scale_0.5 19.41
|
| 1166 |
+
ngram_lm_scale_4.0_attention_scale_0.1 19.57
|
| 1167 |
+
ngram_lm_scale_4.0_attention_scale_0.08 19.61
|
| 1168 |
+
ngram_lm_scale_4.0_attention_scale_0.05 19.67
|
| 1169 |
+
ngram_lm_scale_5.0_attention_scale_0.3 19.71
|
| 1170 |
+
ngram_lm_scale_4.0_attention_scale_0.01 19.73
|
| 1171 |
+
ngram_lm_scale_5.0_attention_scale_0.1 19.99
|
| 1172 |
+
ngram_lm_scale_5.0_attention_scale_0.08 20.01
|
| 1173 |
+
ngram_lm_scale_5.0_attention_scale_0.05 20.05
|
| 1174 |
+
ngram_lm_scale_5.0_attention_scale_0.01 20.11
|
| 1175 |
+
|
| 1176 |
+
2022-04-09 04:57:33,455 INFO [decode_test.py:730] Done!
|