SentenceTransformer based on Alibaba-NLP/gte-large-en-v1.5
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-large-en-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'steinel led floodlight with sensor xled home 1 silver led floodlights anylamp produced by steinel identifiers is 4007841002688 category of toolsandhomeimprovement',
'steinel led floodlight with sensor xled home 1 silver led lighting anylamp produced by steinel identifiers is 4007841002688 category of toolsandhomeimprovement',
'desk organizers quillcom durable bookends with reinforced rib designheavygauge steel construction9 height identifiers is 90117bebk category of officeproducts',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 281,342 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 24 tokens
- mean: 81.17 tokens
- max: 941 tokens
- min: 23 tokens
- mean: 80.26 tokens
- max: 1004 tokens
- Samples:
anchor positive ironwood pharmaceuticals inc class a a 1 full quote netdaniacom pharmaceuticals produced by source nasdaq identifiers is isinus46333x1081 category of automotive
ironwood pharmaceuticals inc class a pharmaceuticals a 1 news netdaniacom produced by source nasdaq identifiers is isinus46333x1081 category of automotive
873010s21 hp 600gb 12g 10k 25 dp sas hdd null price 873010s2110pack new 873010s21 600gb hdd 10 pack wholesale description10 x 600gb 25inch serial attached scsi sassff digitally signed ds 12g dual portenterprise hotplug 512n 10k hard drivein hpe drive tray as picturedfor g1g7 proliant sas serversgenuine number and firmwaregenuine certified drivepart numbers option part 873010b21 smartbuy 873010s21 produced by hp enterprise identifiers is 873010s2110pack category of computersandaccessories key specifications are specifications category proliant harddrive subcategory 10k generation sas part number 873010s2110pack products id 489761 type hard drive hotswap capacity 600gb interface serial attached scsi spindle speed 10000rpm ports dual port data transfer rate 12gbs bytes per sector 512n
873010s21 hp 600gb 12g 10k 25 dp sas hdd null price 873010s21 new 873010s21 600gb hdd wholesale description600gb 25inch serial attached scsi sassff digitally signed ds 12g dual portenterprise hotplug 512n 10k hard drivein hpe drive tray as picturedfor g1g7 proliant sas serversgenuine number and firmwaregenuine certified drivepart numbers option part 873010b21 smartbuy 873010s21 produced by hp enterprise identifiers is 873010s21 category of computersandaccessories key specifications are specifications category proliant harddrive subcategory 10k generation sas part number 873010s21 products id 489758 type hard drive hotswap capacity 600gb interface serial attached scsi spindle speed 10000rpm ports dual port data transfer rate 12gbs bytes per sector 512n
armrest fabric gb 2010 audi a4avant argentina market body middle front pr6e3gb model data prn0ln5fn2en2m gb identifiers is 8k0864207a category of automotive
armrest fabric gb 2009 audi a5s5 coupesportback south africa market body middle front pr6e3gb model data coupeprn2e gb identifiers is 8k0864207a category of automotive
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 70,336 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 25 tokens
- mean: 80.88 tokens
- max: 542 tokens
- min: 24 tokens
- mean: 79.18 tokens
- max: 1004 tokens
- Samples:
anchor positive rennline race hook front universal 8 in red each 2000 bmw 323i base wagon chassis panels sheet metal page 3 identifiers is rene01r8 category of automotive
rennline race hook front universal 8 in red each 2000 bmw 323i base wagon chassis panels sheet metal page 3 identifiers is rene01r8 category of automotive
happy new year 2017 peace patch icon card design vector image patch images over 13 000 happy new year 2017 greeting card design with varsity college typography and stitch patch peace symbol icon as number eps10 vector vector image identifiers is 14478945 category of officeproducts
happy new year 2017 peace patch icon card design vector image happy new year 2017 greeting card design with varsity college typography and stitch patch peace symbol icon as number eps10 vector download a free preview or high quality adobe illustrator ai eps pdf resolution jpeg versions identifiers is 14478945 category of officeproducts
hp deskjet d4155 cartridges for ink jet printers quillcom yields up to 399 pagessized and priced for occasional printingoriginal hp ink a little less ink at very affordable price identifiers is 901d8j33an category of officeproducts
hp photosmart c4150 cartridges for ink jet printers quillcom yields up to 399 pagessized and priced for occasional printingoriginal hp ink a little less ink at very affordable price identifiers is 901d8j33an category of officeproducts
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepslearning_rate
: 1e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: Trueauto_find_batch_size
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Truefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.1990 | 7000 | 0.0057 | 0.0026 |
0.3981 | 14000 | 0.0019 | 0.0018 |
0.5971 | 21000 | 0.0016 | 0.0012 |
0.7962 | 28000 | 0.001 | 0.0009 |
0.9952 | 35000 | 0.001 | 0.0009 |
1.1943 | 42000 | 0.0007 | 0.0008 |
1.3933 | 49000 | 0.0004 | 0.0009 |
1.5924 | 56000 | 0.0003 | 0.0009 |
1.7914 | 63000 | 0.0002 | 0.0008 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.2.1
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for spl4shedEdu/gte_IAB
Base model
Alibaba-NLP/gte-large-en-v1.5