BGE base banking-domain
This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: vi
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("splendor1811/BGE-base-banking-ONE")
# Run inference
sentences = [
'Cรกc giao dแปch sแปญ dแปฅng thแบป tรญn dแปฅng cแปงa tรดi ',
'Hฦฐแปng dแบซn xem lแปch sแปญ ',
'Thiแบฟt bแป loa sแบฝ ฤฦฐแปฃc bแบฃo hร nh trong 12 thรกng. Nแบฟu cรณ vแบฅn ฤแป vแป sแบฃn phแบฉm trong quรก trรฌnh sแปญ dแปฅng, Bแบกn vui lรฒng ฤแบฟn Trung Tรขm Bแบฃo Hร nh Phong Vลฉ gแบงn nhแบฅt hoแบทc liรชn hแป hotline: 1800 6865 ฤแป ฤฦฐแปฃc hแป trแปฃ bแบฃo hร nh.\nThรดng tin vแป cแปญa hร ng bแบฃo hร nh Phong Vลฉ nhฦฐ sau:\n+ Miแปn Bแบฏc: Tแบงng 3, sแป 62 Trแบงn ฤแบกi Nghฤฉa, Phฦฐแปng ฤแปng Tรขm, Quแบญn Hai Bร Trฦฐng, TP. Hร Nแปi.\n+ Miแปn Nam: 132E Cรกch Mแบกng Thรกng 8, Phฦฐแปng 9, Quแบญn 3, TP. Hแป Chรญ Minh.\n+ Miแปn Trung: Tแบงng 2, 14-16-18 Nguyแป
n Vฤn Linh, Phฦฐแปng Nam Dฦฐฦกng, Quแบญn Hแบฃi Chรขu, TP. ฤร Nแบตng.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_1024
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 1024 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6794 |
cosine_accuracy@3 | 0.6794 |
cosine_accuracy@5 | 0.6794 |
cosine_accuracy@10 | 0.7495 |
cosine_precision@1 | 0.6794 |
cosine_precision@3 | 0.6794 |
cosine_precision@5 | 0.6794 |
cosine_precision@10 | 0.6476 |
cosine_recall@1 | 0.0645 |
cosine_recall@3 | 0.1935 |
cosine_recall@5 | 0.3226 |
cosine_recall@10 | 0.6094 |
cosine_ndcg@10 | 0.6841 |
cosine_mrr@10 | 0.6864 |
cosine_map@100 | 0.7415 |
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6833 |
cosine_accuracy@3 | 0.6833 |
cosine_accuracy@5 | 0.6833 |
cosine_accuracy@10 | 0.7502 |
cosine_precision@1 | 0.6833 |
cosine_precision@3 | 0.6833 |
cosine_precision@5 | 0.6833 |
cosine_precision@10 | 0.6506 |
cosine_recall@1 | 0.065 |
cosine_recall@3 | 0.1951 |
cosine_recall@5 | 0.3252 |
cosine_recall@10 | 0.6137 |
cosine_ndcg@10 | 0.6878 |
cosine_mrr@10 | 0.69 |
cosine_map@100 | 0.7446 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6742 |
cosine_accuracy@3 | 0.6742 |
cosine_accuracy@5 | 0.6742 |
cosine_accuracy@10 | 0.745 |
cosine_precision@1 | 0.6742 |
cosine_precision@3 | 0.6742 |
cosine_precision@5 | 0.6742 |
cosine_precision@10 | 0.6426 |
cosine_recall@1 | 0.064 |
cosine_recall@3 | 0.1919 |
cosine_recall@5 | 0.3198 |
cosine_recall@10 | 0.6041 |
cosine_ndcg@10 | 0.679 |
cosine_mrr@10 | 0.6813 |
cosine_map@100 | 0.7379 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6684 |
cosine_accuracy@3 | 0.6684 |
cosine_accuracy@5 | 0.6684 |
cosine_accuracy@10 | 0.7346 |
cosine_precision@1 | 0.6684 |
cosine_precision@3 | 0.6684 |
cosine_precision@5 | 0.6684 |
cosine_precision@10 | 0.6369 |
cosine_recall@1 | 0.0631 |
cosine_recall@3 | 0.1892 |
cosine_recall@5 | 0.3153 |
cosine_recall@10 | 0.5953 |
cosine_ndcg@10 | 0.6728 |
cosine_mrr@10 | 0.675 |
cosine_map@100 | 0.7314 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.636 |
cosine_accuracy@3 | 0.636 |
cosine_accuracy@5 | 0.636 |
cosine_accuracy@10 | 0.7099 |
cosine_precision@1 | 0.636 |
cosine_precision@3 | 0.636 |
cosine_precision@5 | 0.636 |
cosine_precision@10 | 0.6071 |
cosine_recall@1 | 0.0601 |
cosine_recall@3 | 0.1803 |
cosine_recall@5 | 0.3005 |
cosine_recall@10 | 0.5685 |
cosine_ndcg@10 | 0.6409 |
cosine_mrr@10 | 0.6433 |
cosine_map@100 | 0.7035 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 13,863 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 22.35 tokens
- max: 61 tokens
- min: 3 tokens
- mean: 225.69 tokens
- max: 419 tokens
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 6lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.3687 | 10 | 48.8875 | - | - | - | - | - |
0.7373 | 20 | 23.8518 | - | - | - | - | - |
1.0 | 28 | - | 0.6421 | 0.6376 | 0.6334 | 0.6215 | 0.5950 |
1.0737 | 30 | 16.242 | - | - | - | - | - |
1.4424 | 40 | 13.0298 | - | - | - | - | - |
1.8111 | 50 | 12.8472 | - | - | - | - | - |
2.0 | 56 | - | 0.6764 | 0.6663 | 0.6589 | 0.6487 | 0.6127 |
2.1475 | 60 | 9.3195 | - | - | - | - | - |
2.5161 | 70 | 9.0553 | - | - | - | - | - |
2.8848 | 80 | 9.8082 | - | - | - | - | - |
3.0 | 84 | - | 0.6801 | 0.6792 | 0.6749 | 0.6679 | 0.6279 |
3.2212 | 90 | 7.864 | - | - | - | - | - |
3.5899 | 100 | 7.6955 | - | - | - | - | - |
3.9585 | 110 | 8.0813 | - | - | - | - | - |
4.0 | 112 | - | 0.6879 | 0.6888 | 0.6779 | 0.6645 | 0.6361 |
4.2949 | 120 | 6.899 | - | - | - | - | - |
4.6636 | 130 | 7.1247 | - | - | - | - | - |
5.0 | 140 | 6.2173 | 0.6841 | 0.6859 | 0.6770 | 0.6702 | 0.6410 |
5.3687 | 150 | 6.741 | - | - | - | - | - |
5.7373 | 160 | 6.5777 | - | - | - | - | - |
6.0 | 168 | - | 0.6841 | 0.6878 | 0.6790 | 0.6728 | 0.6409 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for splendor1811/BGE-base-banking-ONE
Base model
BAAI/bge-m3Evaluation results
- Cosine Accuracy@1 on dim 1024self-reported0.679
- Cosine Accuracy@3 on dim 1024self-reported0.679
- Cosine Accuracy@5 on dim 1024self-reported0.679
- Cosine Accuracy@10 on dim 1024self-reported0.750
- Cosine Precision@1 on dim 1024self-reported0.679
- Cosine Precision@3 on dim 1024self-reported0.679
- Cosine Precision@5 on dim 1024self-reported0.679
- Cosine Precision@10 on dim 1024self-reported0.648
- Cosine Recall@1 on dim 1024self-reported0.065
- Cosine Recall@3 on dim 1024self-reported0.194