layoutlm-funsd3
This model is a fine-tuned version of srinidhireddy1604/layoutlm-funsd2 on the funsd dataset. It achieves the following results on the evaluation set:
- Loss: 0.9932
- Answer: {'precision': 0.7259343148357871, 'recall': 0.792336217552534, 'f1': 0.7576832151300236, 'number': 809}
- Header: {'precision': 0.35185185185185186, 'recall': 0.4789915966386555, 'f1': 0.4056939501779359, 'number': 119}
- Question: {'precision': 0.7885141294439381, 'recall': 0.812206572769953, 'f1': 0.8001850138760408, 'number': 1065}
- Overall Precision: 0.7297
- Overall Recall: 0.7842
- Overall F1: 0.7560
- Overall Accuracy: 0.7976
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
0.1809 | 1.0 | 5 | 0.8250 | {'precision': 0.7294250281848929, 'recall': 0.799752781211372, 'f1': 0.7629716981132075, 'number': 809} | {'precision': 0.3492063492063492, 'recall': 0.3697478991596639, 'f1': 0.35918367346938773, 'number': 119} | {'precision': 0.7886178861788617, 'recall': 0.819718309859155, 'f1': 0.8038674033149171, 'number': 1065} | 0.7377 | 0.7847 | 0.7605 | 0.8026 |
0.1667 | 2.0 | 10 | 0.8470 | {'precision': 0.7165178571428571, 'recall': 0.7935723114956736, 'f1': 0.7530791788856306, 'number': 809} | {'precision': 0.3184713375796178, 'recall': 0.42016806722689076, 'f1': 0.3623188405797101, 'number': 119} | {'precision': 0.7872727272727272, 'recall': 0.8131455399061033, 'f1': 0.8, 'number': 1065} | 0.7236 | 0.7817 | 0.7516 | 0.8022 |
0.1444 | 3.0 | 15 | 0.8811 | {'precision': 0.7223451327433629, 'recall': 0.8071693448702101, 'f1': 0.762405137186223, 'number': 809} | {'precision': 0.3700787401574803, 'recall': 0.3949579831932773, 'f1': 0.3821138211382114, 'number': 119} | {'precision': 0.7886550777676121, 'recall': 0.8093896713615023, 'f1': 0.798887859128823, 'number': 1065} | 0.7354 | 0.7837 | 0.7588 | 0.8032 |
0.1334 | 4.0 | 20 | 0.8843 | {'precision': 0.7368421052631579, 'recall': 0.7787391841779975, 'f1': 0.7572115384615384, 'number': 809} | {'precision': 0.3630573248407643, 'recall': 0.4789915966386555, 'f1': 0.4130434782608695, 'number': 119} | {'precision': 0.7717099373321397, 'recall': 0.8093896713615023, 'f1': 0.7901008249312558, 'number': 1065} | 0.7276 | 0.7772 | 0.7516 | 0.8024 |
0.1154 | 5.0 | 25 | 0.9115 | {'precision': 0.7119565217391305, 'recall': 0.8096415327564895, 'f1': 0.7576633892423367, 'number': 809} | {'precision': 0.352112676056338, 'recall': 0.42016806722689076, 'f1': 0.38314176245210724, 'number': 119} | {'precision': 0.7927844588344126, 'recall': 0.8046948356807512, 'f1': 0.7986952469711092, 'number': 1065} | 0.7289 | 0.7837 | 0.7553 | 0.7982 |
0.1092 | 6.0 | 30 | 0.9025 | {'precision': 0.7090909090909091, 'recall': 0.7713226205191595, 'f1': 0.738898756660746, 'number': 809} | {'precision': 0.3248407643312102, 'recall': 0.42857142857142855, 'f1': 0.3695652173913043, 'number': 119} | {'precision': 0.7737355811889973, 'recall': 0.8187793427230047, 'f1': 0.7956204379562043, 'number': 1065} | 0.7149 | 0.7762 | 0.7443 | 0.8039 |
0.0958 | 7.0 | 35 | 0.9463 | {'precision': 0.7219132369299222, 'recall': 0.8022249690976514, 'f1': 0.7599531615925059, 'number': 809} | {'precision': 0.3935483870967742, 'recall': 0.5126050420168067, 'f1': 0.44525547445255476, 'number': 119} | {'precision': 0.801125703564728, 'recall': 0.8018779342723005, 'f1': 0.8015016424213984, 'number': 1065} | 0.7377 | 0.7847 | 0.7605 | 0.8010 |
0.0931 | 8.0 | 40 | 0.9361 | {'precision': 0.72, 'recall': 0.8009888751545118, 'f1': 0.7583382094792276, 'number': 809} | {'precision': 0.37142857142857144, 'recall': 0.4369747899159664, 'f1': 0.4015444015444015, 'number': 119} | {'precision': 0.7856502242152467, 'recall': 0.8225352112676056, 'f1': 0.8036697247706422, 'number': 1065} | 0.7313 | 0.7908 | 0.7599 | 0.8047 |
0.0823 | 9.0 | 45 | 0.9595 | {'precision': 0.7298524404086265, 'recall': 0.7948084054388134, 'f1': 0.7609467455621302, 'number': 809} | {'precision': 0.38961038961038963, 'recall': 0.5042016806722689, 'f1': 0.43956043956043955, 'number': 119} | {'precision': 0.7935483870967742, 'recall': 0.8084507042253521, 'f1': 0.8009302325581394, 'number': 1065} | 0.7377 | 0.7847 | 0.7605 | 0.8041 |
0.0787 | 10.0 | 50 | 0.9714 | {'precision': 0.7212931995540691, 'recall': 0.799752781211372, 'f1': 0.7584994138335287, 'number': 809} | {'precision': 0.3710691823899371, 'recall': 0.4957983193277311, 'f1': 0.4244604316546763, 'number': 119} | {'precision': 0.7863013698630137, 'recall': 0.8084507042253521, 'f1': 0.7972222222222223, 'number': 1065} | 0.7285 | 0.7863 | 0.7563 | 0.8005 |
0.0796 | 11.0 | 55 | 0.9748 | {'precision': 0.7278911564625851, 'recall': 0.7935723114956736, 'f1': 0.7593140153755175, 'number': 809} | {'precision': 0.3609467455621302, 'recall': 0.5126050420168067, 'f1': 0.4236111111111111, 'number': 119} | {'precision': 0.7861751152073733, 'recall': 0.8009389671361502, 'f1': 0.7934883720930233, 'number': 1065} | 0.7285 | 0.7807 | 0.7537 | 0.7997 |
0.074 | 12.0 | 60 | 0.9863 | {'precision': 0.7314606741573034, 'recall': 0.8046971569839307, 'f1': 0.7663331371394938, 'number': 809} | {'precision': 0.38461538461538464, 'recall': 0.46218487394957986, 'f1': 0.4198473282442748, 'number': 119} | {'precision': 0.7985212569316081, 'recall': 0.8112676056338028, 'f1': 0.8048439683278994, 'number': 1065} | 0.7423 | 0.7878 | 0.7644 | 0.8007 |
0.0731 | 13.0 | 65 | 0.9908 | {'precision': 0.7353603603603603, 'recall': 0.8071693448702101, 'f1': 0.769593400117855, 'number': 809} | {'precision': 0.3793103448275862, 'recall': 0.46218487394957986, 'f1': 0.41666666666666663, 'number': 119} | {'precision': 0.7937956204379562, 'recall': 0.8169014084507042, 'f1': 0.8051827857473391, 'number': 1065} | 0.7412 | 0.7918 | 0.7656 | 0.8008 |
0.0725 | 14.0 | 70 | 0.9926 | {'precision': 0.7221597300337458, 'recall': 0.7935723114956736, 'f1': 0.7561837455830389, 'number': 809} | {'precision': 0.3597560975609756, 'recall': 0.4957983193277311, 'f1': 0.4169611307420495, 'number': 119} | {'precision': 0.7859103385178408, 'recall': 0.8065727699530516, 'f1': 0.7961075069508805, 'number': 1065} | 0.7269 | 0.7827 | 0.7538 | 0.7963 |
0.0724 | 15.0 | 75 | 0.9932 | {'precision': 0.7259343148357871, 'recall': 0.792336217552534, 'f1': 0.7576832151300236, 'number': 809} | {'precision': 0.35185185185185186, 'recall': 0.4789915966386555, 'f1': 0.4056939501779359, 'number': 119} | {'precision': 0.7885141294439381, 'recall': 0.812206572769953, 'f1': 0.8001850138760408, 'number': 1065} | 0.7297 | 0.7842 | 0.7560 | 0.7976 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 112
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for srinidhireddy1604/layoutlm-funsd3
Base model
microsoft/layoutlm-base-uncased
Finetuned
srinidhireddy1604/layoutlm-funsd
Finetuned
srinidhireddy1604/layoutlm-funsd2