layoutlm-funsd3

This model is a fine-tuned version of srinidhireddy1604/layoutlm-funsd2 on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9932
  • Answer: {'precision': 0.7259343148357871, 'recall': 0.792336217552534, 'f1': 0.7576832151300236, 'number': 809}
  • Header: {'precision': 0.35185185185185186, 'recall': 0.4789915966386555, 'f1': 0.4056939501779359, 'number': 119}
  • Question: {'precision': 0.7885141294439381, 'recall': 0.812206572769953, 'f1': 0.8001850138760408, 'number': 1065}
  • Overall Precision: 0.7297
  • Overall Recall: 0.7842
  • Overall F1: 0.7560
  • Overall Accuracy: 0.7976

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1809 1.0 5 0.8250 {'precision': 0.7294250281848929, 'recall': 0.799752781211372, 'f1': 0.7629716981132075, 'number': 809} {'precision': 0.3492063492063492, 'recall': 0.3697478991596639, 'f1': 0.35918367346938773, 'number': 119} {'precision': 0.7886178861788617, 'recall': 0.819718309859155, 'f1': 0.8038674033149171, 'number': 1065} 0.7377 0.7847 0.7605 0.8026
0.1667 2.0 10 0.8470 {'precision': 0.7165178571428571, 'recall': 0.7935723114956736, 'f1': 0.7530791788856306, 'number': 809} {'precision': 0.3184713375796178, 'recall': 0.42016806722689076, 'f1': 0.3623188405797101, 'number': 119} {'precision': 0.7872727272727272, 'recall': 0.8131455399061033, 'f1': 0.8, 'number': 1065} 0.7236 0.7817 0.7516 0.8022
0.1444 3.0 15 0.8811 {'precision': 0.7223451327433629, 'recall': 0.8071693448702101, 'f1': 0.762405137186223, 'number': 809} {'precision': 0.3700787401574803, 'recall': 0.3949579831932773, 'f1': 0.3821138211382114, 'number': 119} {'precision': 0.7886550777676121, 'recall': 0.8093896713615023, 'f1': 0.798887859128823, 'number': 1065} 0.7354 0.7837 0.7588 0.8032
0.1334 4.0 20 0.8843 {'precision': 0.7368421052631579, 'recall': 0.7787391841779975, 'f1': 0.7572115384615384, 'number': 809} {'precision': 0.3630573248407643, 'recall': 0.4789915966386555, 'f1': 0.4130434782608695, 'number': 119} {'precision': 0.7717099373321397, 'recall': 0.8093896713615023, 'f1': 0.7901008249312558, 'number': 1065} 0.7276 0.7772 0.7516 0.8024
0.1154 5.0 25 0.9115 {'precision': 0.7119565217391305, 'recall': 0.8096415327564895, 'f1': 0.7576633892423367, 'number': 809} {'precision': 0.352112676056338, 'recall': 0.42016806722689076, 'f1': 0.38314176245210724, 'number': 119} {'precision': 0.7927844588344126, 'recall': 0.8046948356807512, 'f1': 0.7986952469711092, 'number': 1065} 0.7289 0.7837 0.7553 0.7982
0.1092 6.0 30 0.9025 {'precision': 0.7090909090909091, 'recall': 0.7713226205191595, 'f1': 0.738898756660746, 'number': 809} {'precision': 0.3248407643312102, 'recall': 0.42857142857142855, 'f1': 0.3695652173913043, 'number': 119} {'precision': 0.7737355811889973, 'recall': 0.8187793427230047, 'f1': 0.7956204379562043, 'number': 1065} 0.7149 0.7762 0.7443 0.8039
0.0958 7.0 35 0.9463 {'precision': 0.7219132369299222, 'recall': 0.8022249690976514, 'f1': 0.7599531615925059, 'number': 809} {'precision': 0.3935483870967742, 'recall': 0.5126050420168067, 'f1': 0.44525547445255476, 'number': 119} {'precision': 0.801125703564728, 'recall': 0.8018779342723005, 'f1': 0.8015016424213984, 'number': 1065} 0.7377 0.7847 0.7605 0.8010
0.0931 8.0 40 0.9361 {'precision': 0.72, 'recall': 0.8009888751545118, 'f1': 0.7583382094792276, 'number': 809} {'precision': 0.37142857142857144, 'recall': 0.4369747899159664, 'f1': 0.4015444015444015, 'number': 119} {'precision': 0.7856502242152467, 'recall': 0.8225352112676056, 'f1': 0.8036697247706422, 'number': 1065} 0.7313 0.7908 0.7599 0.8047
0.0823 9.0 45 0.9595 {'precision': 0.7298524404086265, 'recall': 0.7948084054388134, 'f1': 0.7609467455621302, 'number': 809} {'precision': 0.38961038961038963, 'recall': 0.5042016806722689, 'f1': 0.43956043956043955, 'number': 119} {'precision': 0.7935483870967742, 'recall': 0.8084507042253521, 'f1': 0.8009302325581394, 'number': 1065} 0.7377 0.7847 0.7605 0.8041
0.0787 10.0 50 0.9714 {'precision': 0.7212931995540691, 'recall': 0.799752781211372, 'f1': 0.7584994138335287, 'number': 809} {'precision': 0.3710691823899371, 'recall': 0.4957983193277311, 'f1': 0.4244604316546763, 'number': 119} {'precision': 0.7863013698630137, 'recall': 0.8084507042253521, 'f1': 0.7972222222222223, 'number': 1065} 0.7285 0.7863 0.7563 0.8005
0.0796 11.0 55 0.9748 {'precision': 0.7278911564625851, 'recall': 0.7935723114956736, 'f1': 0.7593140153755175, 'number': 809} {'precision': 0.3609467455621302, 'recall': 0.5126050420168067, 'f1': 0.4236111111111111, 'number': 119} {'precision': 0.7861751152073733, 'recall': 0.8009389671361502, 'f1': 0.7934883720930233, 'number': 1065} 0.7285 0.7807 0.7537 0.7997
0.074 12.0 60 0.9863 {'precision': 0.7314606741573034, 'recall': 0.8046971569839307, 'f1': 0.7663331371394938, 'number': 809} {'precision': 0.38461538461538464, 'recall': 0.46218487394957986, 'f1': 0.4198473282442748, 'number': 119} {'precision': 0.7985212569316081, 'recall': 0.8112676056338028, 'f1': 0.8048439683278994, 'number': 1065} 0.7423 0.7878 0.7644 0.8007
0.0731 13.0 65 0.9908 {'precision': 0.7353603603603603, 'recall': 0.8071693448702101, 'f1': 0.769593400117855, 'number': 809} {'precision': 0.3793103448275862, 'recall': 0.46218487394957986, 'f1': 0.41666666666666663, 'number': 119} {'precision': 0.7937956204379562, 'recall': 0.8169014084507042, 'f1': 0.8051827857473391, 'number': 1065} 0.7412 0.7918 0.7656 0.8008
0.0725 14.0 70 0.9926 {'precision': 0.7221597300337458, 'recall': 0.7935723114956736, 'f1': 0.7561837455830389, 'number': 809} {'precision': 0.3597560975609756, 'recall': 0.4957983193277311, 'f1': 0.4169611307420495, 'number': 119} {'precision': 0.7859103385178408, 'recall': 0.8065727699530516, 'f1': 0.7961075069508805, 'number': 1065} 0.7269 0.7827 0.7538 0.7963
0.0724 15.0 75 0.9932 {'precision': 0.7259343148357871, 'recall': 0.792336217552534, 'f1': 0.7576832151300236, 'number': 809} {'precision': 0.35185185185185186, 'recall': 0.4789915966386555, 'f1': 0.4056939501779359, 'number': 119} {'precision': 0.7885141294439381, 'recall': 0.812206572769953, 'f1': 0.8001850138760408, 'number': 1065} 0.7297 0.7842 0.7560 0.7976

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
112
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for srinidhireddy1604/layoutlm-funsd3