Stable Code Instruct 3B
Try it out here: https://huggingface.co/spaces/stabilityai/stable-code-instruct-3b
Model Description
stable-code-instruct-3b
is a 2.7B billion parameter decoder-only language model tuned from stable-code-3b
. This model was trained on a mix of publicly available datasets, synthetic datasets using Direct Preference Optimization (DPO).
This instruct tune demonstrates state-of-the-art performance (compared to models of similar size) on the MultiPL-E metrics across multiple programming languages tested using BigCode's Evaluation Harness, and on the code portions of MT Bench. The model is finetuned to make it useable in tasks like,
- General purpose Code/Software Engineering like conversations.
- SQL related generation and conversation.
Please note: For commercial use, please refer to https://stability.ai/license.
Usage
Here's how you can run the model use the model:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-code-instruct-3b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("stabilityai/stable-code-instruct-3b", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.eval()
model = model.cuda()
messages = [
{
"role": "system",
"content": "You are a helpful and polite assistant",
},
{
"role": "user",
"content": "Write a simple website in HTML. When a user clicks the button, it shows a random joke from a list of 4 jokes."
},
]
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
tokens = model.generate(
**inputs,
max_new_tokens=1024,
temperature=0.5,
top_p=0.95,
top_k=100,
do_sample=True,
use_cache=True
)
output = tokenizer.batch_decode(tokens[:, inputs.input_ids.shape[-1]:], skip_special_tokens=False)[0]
Model Details
- Developed by: Stability AI
- Model type:
Stable Code Instruct 3B
model is an auto-regressive language model based on the transformer decoder architecture. - Language(s): English
- Paper: Stable Code Technical Report
- Library: Alignment Handbook
- Finetuned from model: https://huggingface.co/stabilityai/stable-code-3b
- License: StabilityAI Community License.
- Commercial License: to use this model commercially, please refer to https://stability.ai/license
- Contact: For questions and comments about the model, please email
[email protected]
Performance
Multi-PL Benchmark:
Model | Size | Avg | Python | C++ | JavaScript | Java | PHP | Rust |
---|---|---|---|---|---|---|---|---|
Codellama Instruct | 7B | 0.30 | 0.33 | 0.31 | 0.31 | 0.29 | 0.31 | 0.25 |
Deepseek Instruct | 1.3B | 0.44 | 0.52 | 0.52 | 0.41 | 0.46 | 0.45 | 0.28 |
Stable Code Instruct (SFT) | 3B | 0.44 | 0.55 | 0.45 | 0.42 | 0.42 | 0.44 | 0.32 |
Stable Code Instruct (DPO) | 3B | 0.47 | 0.59 | 0.49 | 0.49 | 0.44 | 0.45 | 0.37 |
MT-Bench Coding:
Model | Size | Score |
---|---|---|
DeepSeek Coder | 1.3B | 4.6 |
Stable Code Instruct (DPO) | 3B | 5.8(ours) |
Stable Code Instruct (SFT) | 3B | 5.5 |
DeepSeek Coder | 6.7B | 6.9 |
CodeLlama Instruct | 7B | 3.55 |
StarChat2 | 15B | 5.7 |
SQL Performance
Model | Size | Date | Group By | Order By | Ratio | Join | Where |
---|---|---|---|---|---|---|---|
Stable Code Instruct (DPO) | 3B | 24.0% | 54.2% | 68.5% | 40.0% | 54.2% | 42.8% |
DeepSeek-Coder Instruct | 1.3B | 24.0% | 37.1% | 51.4% | 34.3% | 45.7% | 45.7% |
SQLCoder | 7B | 64.0% | 82.9% | 74.3% | 54.3% | 74.3% | 74.3% |
How to Cite
@misc{stable-code-instruct-3b,
url={[https://huggingface.co/stabilityai/stable-code-3b](https://huggingface.co/stabilityai/stable-code-instruct-3b)},
title={Stable Code 3B},
author={Phung, Duy, and Pinnaparaju, Nikhil and Adithyan, Reshinth and Zhuravinskyi, Maksym and Tow, Jonathan and Cooper, Nathan}
}
- Downloads last month
- 1,413
Model tree for stabilityai/stable-code-instruct-3b
Spaces using stabilityai/stable-code-instruct-3b 10
Collection including stabilityai/stable-code-instruct-3b
Evaluation results
- pass@1 on MultiPL-HumanEval (Python)self-reported32.400
- pass@1 on MultiPL-HumanEval (C++)self-reported30.900
- pass@1 on MultiPL-HumanEval (Java)self-reported32.100
- pass@1 on MultiPL-HumanEval (JavaScript)self-reported32.100
- pass@1 on MultiPL-HumanEval (PHP)self-reported24.200
- pass@1 on MultiPL-HumanEval (Rust)self-reported23.000