General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model

πŸ”‹Online Demo | 🌟GitHub | πŸ“œPaper

Haoran Wei*, Chenglong Liu*, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu, Zheng Ge, Liang Zhao, Jianjian Sun, Yuang Peng, Chunrui Han, Xiangyu Zhang

image/jpeg

Usage

Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10:

torch==2.0.1
torchvision==0.15.2
transformers==4.37.2
tiktoken==0.6.0
verovio==4.3.1
accelerate==0.28.0
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval().cuda()


# input your test image
image_file = 'xxx.jpg'

# plain texts OCR
res = model.chat(tokenizer, image_file, ocr_type='ocr')

# format texts OCR:
# res = model.chat(tokenizer, image_file, ocr_type='format')

# fine-grained OCR:
# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_box='')
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_box='')
# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_color='')
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_color='')

# multi-crop OCR:
# res = model.chat_crop(tokenizer, image_file, ocr_type='ocr')
# res = model.chat_crop(tokenizer, image_file, ocr_type='format')

# render the formatted OCR results:
# res = model.chat(tokenizer, image_file, ocr_type='format', render=True, save_render_file = './demo.html')

print(res)

More details about 'ocr_type', 'ocr_box', 'ocr_color', and 'render' can be found at our GitHub. Our training codes are available at our GitHub.

More Multimodal Projects

πŸ‘ Welcome to explore more multimodal projects of our team:

Vary | Fox | OneChart

Citation

If you find our work helpful, please consider citing our papers πŸ“ and liking this project ❀️!

@article{wei2024general,
  title={General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model},
  author={Wei, Haoran and Liu, Chenglong and Chen, Jinyue and Wang, Jia and Kong, Lingyu and Xu, Yanming and Ge, Zheng and Zhao, Liang and Sun, Jianjian and Peng, Yuang and others},
  journal={arXiv preprint arXiv:2409.01704},
  year={2024}
}
@article{liu2024focus,
  title={Focus Anywhere for Fine-grained Multi-page Document Understanding},
  author={Liu, Chenglong and Wei, Haoran and Chen, Jinyue and Kong, Lingyu and Ge, Zheng and Zhu, Zining and Zhao, Liang and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},
  journal={arXiv preprint arXiv:2405.14295},
  year={2024}
}
@article{wei2023vary,
  title={Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models},
  author={Wei, Haoran and Kong, Lingyu and Chen, Jinyue and Zhao, Liang and Ge, Zheng and Yang, Jinrong and Sun, Jianjian and Han, Chunrui and Zhang, Xiangyu},
  journal={arXiv preprint arXiv:2312.06109},
  year={2023}
}
Downloads last month
734,681
Safetensors
Model size
716M params
Tensor type
BF16
Β·
Inference API
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for stepfun-ai/GOT-OCR2_0

Adapters
1 model
Finetunes
3 models

Spaces using stepfun-ai/GOT-OCR2_0 53