You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Built with Axolotl

See axolotl config

axolotl version: 0.12.2

base_model: sudoping01/bambara-llm-exp3-v2-merged #google/gemma-3n-E2B-it
hub_model_id: sudoping01/bambara-llm-exp3-continous-v2
plugins:
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
cut_cross_entropy: true
load_in_4bit: false  # Changed: Use LoRA instead of QLoRA for better quality
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
ddp: true
chat_template: gemma3n
eot_tokens:
  - <end_of_turn>
special_tokens:
  eot_token: <end_of_turn>
datasets:
  - path: sudoping01/bambara-instructions
    type: chat_template
    split: train
    name: cleaned
    field_messages: messages
    message_property_mappings:
      role: role
      content: content
val_set_size: 0.01
output_dir: ./outputs/bambara-gemma3n-lora-exp3-continous-v2
adapter: lora  # Changed: LoRA instead of QLoRA
lora_r: 64     # Increased: Higher rank for better capacity
lora_alpha: 128 # Increased: 2x the rank is a good starting point
lora_dropout: 0.05
lora_target_modules: 'model.language_model.layers.[\d]+.(mlp|self_attn).(up|down|gate|q|k|v|o)_proj'
sequence_len: 4096 
sample_packing: false
pad_to_sequence_len: false
micro_batch_size: 8  # Increased: You have 8x H100s, can handle larger batches
gradient_accumulation_steps: 2
num_epochs: 6  # Reduced: Start conservative with 1M samples
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 1.2e-4  # Changed: Your friend's suggestion for 1M samples on 7B model
warmup_ratio: 0.03
weight_decay: 0.01
bf16: auto
tf32: false
logging_steps: 10
saves_per_epoch: 2  # Increased: More checkpoints for 1M samples
evals_per_epoch: 2

bambara-llm-exp3-continous-v2

This model is a fine-tuned version of sudoping01/bambara-llm-exp3-v2-merged on the sudoping01/bambara-instructions dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2763
  • Memory/max Mem Active(gib): 57.85
  • Memory/max Mem Allocated(gib): 57.85
  • Memory/device Mem Reserved(gib): 59.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Use adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1267
  • training_steps: 42251

Training results

Training Loss Epoch Step Validation Loss Mem Active(gib) Mem Allocated(gib) Mem Reserved(gib)
No log 0 0 0.3871 18.76 18.76 19.99
0.4401 0.5 3521 0.4003 57.52 57.52 58.42
0.4292 1.0 7042 0.3883 57.52 57.52 58.42
0.3849 1.5 10563 0.3775 57.54 57.54 59.3
0.4088 2.0 14084 0.3677 57.54 57.54 59.3
0.3887 2.5 17605 0.3540 57.84 57.84 59.3
0.3169 3.0 21126 0.3368 57.85 57.85 59.88
0.3384 3.5 24647 0.3221 57.85 57.85 59.88
0.3119 4.0 28168 0.3043 57.85 57.85 59.88
0.3069 4.5 31689 0.2908 57.85 57.85 59.88
0.3314 5.0 35210 0.2807 57.85 57.85 59.88
0.273 5.5 38731 0.2763 57.85 57.85 59.88

Framework versions

  • PEFT 0.17.0
  • Transformers 4.55.2
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for sudoping01/bambara-llm-exp3-continous-v2-all

Adapter
(1)
this model

Dataset used to train sudoping01/bambara-llm-exp3-continous-v2-all