segformer-b0-scene-parse-150

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1486
  • Mean Iou: 0.0000
  • Mean Accuracy: 0.0001
  • Overall Accuracy: 0.0001

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy
4.9721 0.025 1 5.0059 0.0007 0.0148 0.0063
4.9475 0.05 2 5.0027 0.0007 0.0140 0.0060
4.9457 0.075 3 4.9996 0.0008 0.0144 0.0063
4.9923 0.1 4 4.9959 0.0008 0.0142 0.0063
5.0016 0.125 5 4.9912 0.0009 0.0153 0.0069
4.9753 0.15 6 4.9876 0.0008 0.0149 0.0070
4.8799 0.175 7 4.9824 0.0006 0.0108 0.0051
4.9689 0.2 8 4.9767 0.0006 0.0095 0.0045
4.9046 0.225 9 4.9697 0.0006 0.0093 0.0044
4.8772 0.25 10 4.9629 0.0005 0.0074 0.0035
4.7839 0.275 11 4.9574 0.0005 0.0084 0.0038
4.9577 0.3 12 4.9500 0.0005 0.0074 0.0031
4.8491 0.325 13 4.9411 0.0004 0.0067 0.0026
4.8449 0.35 14 4.9340 0.0004 0.0070 0.0026
4.8899 0.375 15 4.9229 0.0003 0.0051 0.0020
4.7924 0.4 16 4.9163 0.0003 0.0050 0.0019
4.7651 0.425 17 4.9072 0.0003 0.0043 0.0016
4.7951 0.45 18 4.8953 0.0002 0.0035 0.0013
4.7355 0.475 19 4.8865 0.0002 0.0028 0.0010
4.7461 0.5 20 4.8723 0.0002 0.0026 0.0008
4.704 0.525 21 4.8606 0.0002 0.0022 0.0007
4.7775 0.55 22 4.8484 0.0001 0.0017 0.0006
4.7081 0.575 23 4.8331 0.0001 0.0013 0.0004
4.7681 0.6 24 4.8187 0.0001 0.0009 0.0003
4.7297 0.625 25 4.8037 0.0001 0.0008 0.0003
4.8181 0.65 26 4.7882 0.0001 0.0007 0.0002
4.833 0.675 27 4.7748 0.0001 0.0006 0.0002
4.7222 0.7 28 4.7575 0.0000 0.0004 0.0002
4.6457 0.725 29 4.7389 0.0000 0.0004 0.0002
4.7089 0.75 30 4.7236 0.0000 0.0005 0.0002
4.543 0.775 31 4.7079 0.0001 0.0006 0.0002
4.5529 0.8 32 4.6963 0.0001 0.0006 0.0003
4.7005 0.825 33 4.6759 0.0001 0.0006 0.0003
4.4735 0.85 34 4.6630 0.0001 0.0008 0.0004
4.6562 0.875 35 4.6468 0.0001 0.0009 0.0004
4.5902 0.9 36 4.6274 0.0001 0.0008 0.0004
4.4974 0.925 37 4.6125 0.0001 0.0008 0.0004
4.524 0.95 38 4.5967 0.0001 0.0011 0.0005
4.5527 0.975 39 4.5826 0.0001 0.0011 0.0005
4.5165 1.0 40 4.5627 0.0001 0.0010 0.0005
4.6337 1.025 41 4.5502 0.0001 0.0012 0.0006
4.4551 1.05 42 4.5425 0.0001 0.0012 0.0005
4.4697 1.075 43 4.5294 0.0001 0.0006 0.0003
4.4967 1.1 44 4.5065 0.0001 0.0007 0.0003
4.4839 1.125 45 4.4896 0.0000 0.0004 0.0002
4.4394 1.15 46 4.4699 0.0000 0.0003 0.0001
4.4557 1.175 47 4.4511 0.0000 0.0003 0.0001
4.2669 1.2 48 4.4475 0.0000 0.0003 0.0001
4.3143 1.225 49 4.4325 0.0000 0.0002 0.0001
4.4519 1.25 50 4.4195 0.0000 0.0002 0.0001
4.5376 1.275 51 4.4092 0.0000 0.0001 0.0001
4.2617 1.3 52 4.4058 0.0000 0.0001 0.0000
4.2813 1.325 53 4.3936 0.0000 0.0001 0.0000
4.5218 1.35 54 4.3867 0.0000 0.0002 0.0001
4.4805 1.375 55 4.3691 0.0000 0.0002 0.0001
4.184 1.4 56 4.3574 0.0000 0.0002 0.0001
4.2208 1.425 57 4.3606 0.0000 0.0001 0.0001
4.5288 1.45 58 4.3579 0.0000 0.0001 0.0001
4.3959 1.475 59 4.3421 0.0000 0.0001 0.0000
4.2578 1.5 60 4.3403 0.0000 0.0001 0.0000
4.3504 1.525 61 4.3307 0.0000 0.0001 0.0000
4.2364 1.55 62 4.3177 0.0000 0.0001 0.0000
4.3248 1.575 63 4.2924 0.0000 0.0000 0.0000
4.2771 1.6 64 4.2698 0.0000 0.0000 0.0000
4.2447 1.625 65 4.2533 0.0000 0.0000 0.0000
4.4481 1.65 66 4.2418 0.0000 0.0000 0.0000
4.1369 1.675 67 4.2374 0.0000 0.0000 0.0000
4.2266 1.7 68 4.2305 0.0000 0.0000 0.0000
4.5113 1.725 69 4.2225 0.0000 0.0000 0.0000
4.4737 1.75 70 4.2077 0.0000 0.0000 0.0000
4.4571 1.775 71 4.1960 0.0000 0.0001 0.0000
4.2179 1.8 72 4.1824 0.0000 0.0001 0.0000
4.5426 1.825 73 4.1654 0.0000 0.0002 0.0001
4.3632 1.85 74 4.1572 0.0000 0.0002 0.0001
4.2132 1.875 75 4.1628 0.0000 0.0002 0.0001
4.3442 1.9 76 4.1621 0.0000 0.0001 0.0000
4.4454 1.925 77 4.1647 0.0000 0.0001 0.0000
4.1564 1.95 78 4.1691 0.0000 0.0001 0.0000
4.5028 1.975 79 4.1513 0.0000 0.0002 0.0001
4.3814 2.0 80 4.1486 0.0000 0.0001 0.0001

Framework versions

  • Transformers 4.55.2
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
8
Safetensors
Model size
3.75M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for sungkwan2/segformer-b0-scene-parse-150

Base model

nvidia/mit-b0
Finetuned
(454)
this model