segformer-b0-scene-parse-150
This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.1486
- Mean Iou: 0.0000
- Mean Accuracy: 0.0001
- Overall Accuracy: 0.0001
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy |
---|---|---|---|---|---|---|
4.9721 | 0.025 | 1 | 5.0059 | 0.0007 | 0.0148 | 0.0063 |
4.9475 | 0.05 | 2 | 5.0027 | 0.0007 | 0.0140 | 0.0060 |
4.9457 | 0.075 | 3 | 4.9996 | 0.0008 | 0.0144 | 0.0063 |
4.9923 | 0.1 | 4 | 4.9959 | 0.0008 | 0.0142 | 0.0063 |
5.0016 | 0.125 | 5 | 4.9912 | 0.0009 | 0.0153 | 0.0069 |
4.9753 | 0.15 | 6 | 4.9876 | 0.0008 | 0.0149 | 0.0070 |
4.8799 | 0.175 | 7 | 4.9824 | 0.0006 | 0.0108 | 0.0051 |
4.9689 | 0.2 | 8 | 4.9767 | 0.0006 | 0.0095 | 0.0045 |
4.9046 | 0.225 | 9 | 4.9697 | 0.0006 | 0.0093 | 0.0044 |
4.8772 | 0.25 | 10 | 4.9629 | 0.0005 | 0.0074 | 0.0035 |
4.7839 | 0.275 | 11 | 4.9574 | 0.0005 | 0.0084 | 0.0038 |
4.9577 | 0.3 | 12 | 4.9500 | 0.0005 | 0.0074 | 0.0031 |
4.8491 | 0.325 | 13 | 4.9411 | 0.0004 | 0.0067 | 0.0026 |
4.8449 | 0.35 | 14 | 4.9340 | 0.0004 | 0.0070 | 0.0026 |
4.8899 | 0.375 | 15 | 4.9229 | 0.0003 | 0.0051 | 0.0020 |
4.7924 | 0.4 | 16 | 4.9163 | 0.0003 | 0.0050 | 0.0019 |
4.7651 | 0.425 | 17 | 4.9072 | 0.0003 | 0.0043 | 0.0016 |
4.7951 | 0.45 | 18 | 4.8953 | 0.0002 | 0.0035 | 0.0013 |
4.7355 | 0.475 | 19 | 4.8865 | 0.0002 | 0.0028 | 0.0010 |
4.7461 | 0.5 | 20 | 4.8723 | 0.0002 | 0.0026 | 0.0008 |
4.704 | 0.525 | 21 | 4.8606 | 0.0002 | 0.0022 | 0.0007 |
4.7775 | 0.55 | 22 | 4.8484 | 0.0001 | 0.0017 | 0.0006 |
4.7081 | 0.575 | 23 | 4.8331 | 0.0001 | 0.0013 | 0.0004 |
4.7681 | 0.6 | 24 | 4.8187 | 0.0001 | 0.0009 | 0.0003 |
4.7297 | 0.625 | 25 | 4.8037 | 0.0001 | 0.0008 | 0.0003 |
4.8181 | 0.65 | 26 | 4.7882 | 0.0001 | 0.0007 | 0.0002 |
4.833 | 0.675 | 27 | 4.7748 | 0.0001 | 0.0006 | 0.0002 |
4.7222 | 0.7 | 28 | 4.7575 | 0.0000 | 0.0004 | 0.0002 |
4.6457 | 0.725 | 29 | 4.7389 | 0.0000 | 0.0004 | 0.0002 |
4.7089 | 0.75 | 30 | 4.7236 | 0.0000 | 0.0005 | 0.0002 |
4.543 | 0.775 | 31 | 4.7079 | 0.0001 | 0.0006 | 0.0002 |
4.5529 | 0.8 | 32 | 4.6963 | 0.0001 | 0.0006 | 0.0003 |
4.7005 | 0.825 | 33 | 4.6759 | 0.0001 | 0.0006 | 0.0003 |
4.4735 | 0.85 | 34 | 4.6630 | 0.0001 | 0.0008 | 0.0004 |
4.6562 | 0.875 | 35 | 4.6468 | 0.0001 | 0.0009 | 0.0004 |
4.5902 | 0.9 | 36 | 4.6274 | 0.0001 | 0.0008 | 0.0004 |
4.4974 | 0.925 | 37 | 4.6125 | 0.0001 | 0.0008 | 0.0004 |
4.524 | 0.95 | 38 | 4.5967 | 0.0001 | 0.0011 | 0.0005 |
4.5527 | 0.975 | 39 | 4.5826 | 0.0001 | 0.0011 | 0.0005 |
4.5165 | 1.0 | 40 | 4.5627 | 0.0001 | 0.0010 | 0.0005 |
4.6337 | 1.025 | 41 | 4.5502 | 0.0001 | 0.0012 | 0.0006 |
4.4551 | 1.05 | 42 | 4.5425 | 0.0001 | 0.0012 | 0.0005 |
4.4697 | 1.075 | 43 | 4.5294 | 0.0001 | 0.0006 | 0.0003 |
4.4967 | 1.1 | 44 | 4.5065 | 0.0001 | 0.0007 | 0.0003 |
4.4839 | 1.125 | 45 | 4.4896 | 0.0000 | 0.0004 | 0.0002 |
4.4394 | 1.15 | 46 | 4.4699 | 0.0000 | 0.0003 | 0.0001 |
4.4557 | 1.175 | 47 | 4.4511 | 0.0000 | 0.0003 | 0.0001 |
4.2669 | 1.2 | 48 | 4.4475 | 0.0000 | 0.0003 | 0.0001 |
4.3143 | 1.225 | 49 | 4.4325 | 0.0000 | 0.0002 | 0.0001 |
4.4519 | 1.25 | 50 | 4.4195 | 0.0000 | 0.0002 | 0.0001 |
4.5376 | 1.275 | 51 | 4.4092 | 0.0000 | 0.0001 | 0.0001 |
4.2617 | 1.3 | 52 | 4.4058 | 0.0000 | 0.0001 | 0.0000 |
4.2813 | 1.325 | 53 | 4.3936 | 0.0000 | 0.0001 | 0.0000 |
4.5218 | 1.35 | 54 | 4.3867 | 0.0000 | 0.0002 | 0.0001 |
4.4805 | 1.375 | 55 | 4.3691 | 0.0000 | 0.0002 | 0.0001 |
4.184 | 1.4 | 56 | 4.3574 | 0.0000 | 0.0002 | 0.0001 |
4.2208 | 1.425 | 57 | 4.3606 | 0.0000 | 0.0001 | 0.0001 |
4.5288 | 1.45 | 58 | 4.3579 | 0.0000 | 0.0001 | 0.0001 |
4.3959 | 1.475 | 59 | 4.3421 | 0.0000 | 0.0001 | 0.0000 |
4.2578 | 1.5 | 60 | 4.3403 | 0.0000 | 0.0001 | 0.0000 |
4.3504 | 1.525 | 61 | 4.3307 | 0.0000 | 0.0001 | 0.0000 |
4.2364 | 1.55 | 62 | 4.3177 | 0.0000 | 0.0001 | 0.0000 |
4.3248 | 1.575 | 63 | 4.2924 | 0.0000 | 0.0000 | 0.0000 |
4.2771 | 1.6 | 64 | 4.2698 | 0.0000 | 0.0000 | 0.0000 |
4.2447 | 1.625 | 65 | 4.2533 | 0.0000 | 0.0000 | 0.0000 |
4.4481 | 1.65 | 66 | 4.2418 | 0.0000 | 0.0000 | 0.0000 |
4.1369 | 1.675 | 67 | 4.2374 | 0.0000 | 0.0000 | 0.0000 |
4.2266 | 1.7 | 68 | 4.2305 | 0.0000 | 0.0000 | 0.0000 |
4.5113 | 1.725 | 69 | 4.2225 | 0.0000 | 0.0000 | 0.0000 |
4.4737 | 1.75 | 70 | 4.2077 | 0.0000 | 0.0000 | 0.0000 |
4.4571 | 1.775 | 71 | 4.1960 | 0.0000 | 0.0001 | 0.0000 |
4.2179 | 1.8 | 72 | 4.1824 | 0.0000 | 0.0001 | 0.0000 |
4.5426 | 1.825 | 73 | 4.1654 | 0.0000 | 0.0002 | 0.0001 |
4.3632 | 1.85 | 74 | 4.1572 | 0.0000 | 0.0002 | 0.0001 |
4.2132 | 1.875 | 75 | 4.1628 | 0.0000 | 0.0002 | 0.0001 |
4.3442 | 1.9 | 76 | 4.1621 | 0.0000 | 0.0001 | 0.0000 |
4.4454 | 1.925 | 77 | 4.1647 | 0.0000 | 0.0001 | 0.0000 |
4.1564 | 1.95 | 78 | 4.1691 | 0.0000 | 0.0001 | 0.0000 |
4.5028 | 1.975 | 79 | 4.1513 | 0.0000 | 0.0002 | 0.0001 |
4.3814 | 2.0 | 80 | 4.1486 | 0.0000 | 0.0001 | 0.0001 |
Framework versions
- Transformers 4.55.2
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for sungkwan2/segformer-b0-scene-parse-150
Base model
nvidia/mit-b0