whisper-a-nomimo-16
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0862
- Wer: 25.1543
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 132
- num_epochs: 16
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.9727 | 1.0 | 104 | 0.1997 | 47.0679 |
0.231 | 2.0 | 208 | 0.0566 | 178.1636 |
0.2066 | 3.0 | 312 | 0.2833 | 91.6667 |
0.2809 | 4.0 | 416 | 0.2589 | 91.9753 |
0.2872 | 5.0 | 520 | 0.2672 | 88.8889 |
0.2384 | 6.0 | 624 | 0.2239 | 110.1080 |
0.202 | 7.0 | 728 | 0.1959 | 79.7840 |
0.1828 | 8.0 | 832 | 0.1883 | 78.3951 |
0.1775 | 9.0 | 936 | 0.1908 | 79.1667 |
0.1496 | 10.0 | 1040 | 0.2103 | 87.8858 |
0.1162 | 11.0 | 1144 | 0.1416 | 54.3981 |
0.0674 | 12.0 | 1248 | 0.0975 | 61.5741 |
0.0449 | 13.0 | 1352 | 0.0775 | 36.4969 |
0.026 | 14.0 | 1456 | 0.0706 | 23.6883 |
0.0197 | 15.0 | 1560 | 0.0873 | 26.6204 |
0.0119 | 15.8502 | 1648 | 0.0862 | 25.1543 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- -
Model tree for susmitabhatt/whisper-a-nomimo-16
Base model
openai/whisper-small