YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Taiga_Aisaka Text-to-Video Generation

This repository contains the necessary steps and scripts to generate videos using the Taiga_Aisaka text-to-video model. The model leverages LoRA (Low-Rank Adaptation) weights and pre-trained components to create high-quality anime-style videos based on textual prompts.

Prerequisites

Before proceeding, ensure that you have the following installed on your system:

Ubuntu (or a compatible Linux distribution) • Python 3.xpip (Python package manager) • GitGit LFS (Git Large File Storage) • FFmpeg

Installation

  1. Update and Install Dependencies

    sudo apt-get update && sudo apt-get install cbm git-lfs ffmpeg
    
  2. Clone the Repository

    git clone https://huggingface.co/svjack/Taiga_Aisaka_wan_2_1_14_B_text2video_lora
    cd Taiga_Aisaka_wan_2_1_14_B_text2video_lora
    
  3. Install Python Dependencies

    pip install torch torchvision
    pip install -r requirements.txt
    pip install ascii-magic matplotlib tensorboard huggingface_hub datasets
    pip install moviepy==1.0.3
    pip install sageattention==1.0.6
    pip install -U bitsandbytes 
    
  4. Download Model Weights

    wget https://huggingface.co/Wan-AI/Wan2.1-T2V-14B/resolve/main/models_t5_umt5-xxl-enc-bf16.pth
    wget https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth
    wget https://huggingface.co/Wan-AI/Wan2.1-T2V-14B/resolve/main/Wan2.1_VAE.pth
    wget https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors
    wget https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/diffusion_models/wan2.1_t2v_14B_bf16.safetensors
    

Usage

To generate a video, use the wan_generate_video.py script with the appropriate parameters. Below are examples of how to generate videos using the Taiga_Aisaka model.

Burger

python wan_generate_video.py --fp8 --task t2v-14B --video_size 480 832 --video_length 81 --infer_steps 35 \
--save_path save --output_type both \
--dit wan2.1_t2v_14B_bf16.safetensors --vae Wan2.1_VAE.pth \
--t5 models_t5_umt5-xxl-enc-bf16.pth \
--attn_mode torch \
--lora_weight Taiga_Aisaka_w14_outputs/Taiga_Aisaka_w14_lora-000010.safetensors \
--lora_multiplier 1.0 \
--prompt "一个身穿红色高中校服的金发女孩,正在吃汉堡。"

Office

python wan_generate_video.py --fp8 --task t2v-14B --video_size 480 832 --video_length 81 --infer_steps 35 \
--save_path save --output_type both \
--dit wan2.1_t2v_14B_bf16.safetensors --vae Wan2.1_VAE.pth \
--t5 models_t5_umt5-xxl-enc-bf16.pth \
--attn_mode torch \
--lora_weight Taiga_Aisaka_w14_outputs/Taiga_Aisaka_w14_lora-000010.safetensors \
--lora_multiplier 1.0 \
--prompt "一个身穿红色高中校服的金发女孩,角色静立于静谧的办公空间。台灯柔光晕染他沉思的面容,远处键盘敲击声隐约可闻,咖啡香气在空气中浮动。窗外,城市灯火如星辰闪烁,与电脑屏幕的幽蓝微光交融,周遭的工作日常在夜色中延续。"

School

python wan_generate_video.py --fp8 --task t2v-14B --video_size 480 832 --video_length 81 --infer_steps 35 \
--save_path save --output_type both \
--dit wan2.1_t2v_14B_bf16.safetensors --vae Wan2.1_VAE.pth \
--t5 models_t5_umt5-xxl-enc-bf16.pth \
--attn_mode torch \
--lora_weight Taiga_Aisaka_w14_outputs/Taiga_Aisaka_w14_lora-000010.safetensors \
--lora_multiplier 1.0 \
--prompt "一个身穿红色高中校服的金发女孩,行走在操场上,面露微笑,向大家打招呼。"

Parameters

  • --fp8: Enable FP8 precision (optional).
  • --task: Specify the task (e.g., t2v-1.3B).
  • --video_size: Set the resolution of the generated video (e.g., 1024 1024).
  • --video_length: Define the length of the video in frames.
  • --infer_steps: Number of inference steps.
  • --save_path: Directory to save the generated video.
  • --output_type: Output type (e.g., both for video and frames).
  • --dit: Path to the diffusion model weights.
  • --vae: Path to the VAE model weights.
  • --t5: Path to the T5 model weights.
  • --attn_mode: Attention mode (e.g., torch).
  • --lora_weight: Path to the LoRA weights.
  • --lora_multiplier: Multiplier for LoRA weights.
  • --prompt: Textual prompt for video generation.

Output

The generated video and frames will be saved in the specified save_path directory.

Troubleshooting

• Ensure all dependencies are correctly installed. • Verify that the model weights are downloaded and placed in the correct locations. • Check for any missing Python packages and install them using pip.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Acknowledgments

Hugging Face for hosting the model weights. • Wan-AI for providing the pre-trained models. • DeepBeepMeep for contributing to the model weights.

Contact

For any questions or issues, please open an issue on the repository or contact the maintainer.


Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support