Tamako_Kitashirakawa Text-to-Video Generation
This repository contains the necessary steps and scripts to generate videos using the Tamako_Kitashirakawa text-to-video model. The model leverages LoRA (Low-Rank Adaptation) weights and pre-trained components to create high-quality anime-style videos based on textual prompts.
Prerequisites
Before proceeding, ensure that you have the following installed on your system:
• Ubuntu (or a compatible Linux distribution) • Python 3.x • pip (Python package manager) • Git • Git LFS (Git Large File Storage) • FFmpeg
Installation
Update and Install Dependencies
sudo apt-get update && sudo apt-get install cbm git-lfs ffmpeg
Clone the Repository
git clone https://huggingface.co/svjack/Tamako_Kitashirakawa_wan_2_1_1_3_B_text2video_lora cd Tamako_Kitashirakawa_wan_2_1_1_3_B_text2video_lora
Install Python Dependencies
pip install torch torchvision pip install -r requirements.txt pip install ascii-magic matplotlib tensorboard huggingface_hub datasets pip install moviepy==1.0.3 pip install sageattention==1.0.6
Download Model Weights
wget https://huggingface.co/Wan-AI/Wan2.1-T2V-14B/resolve/main/models_t5_umt5-xxl-enc-bf16.pth wget https://huggingface.co/DeepBeepMeep/Wan2.1/resolve/main/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth wget https://huggingface.co/Wan-AI/Wan2.1-T2V-14B/resolve/main/Wan2.1_VAE.pth wget https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors wget https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/diffusion_models/wan2.1_t2v_14B_bf16.safetensors
Usage
To generate a video, use the wan_generate_video.py
script with the appropriate parameters. Below are examples of how to generate videos using the Tamako_Kitashirakawa model.
- Tamako Kitashirakawa Enjoying a Burger
python wan_generate_video.py --fp8 --task t2v-1.3B --video_size 480 832 --video_length 81 --infer_steps 20 \
--save_path save --output_type both \
--dit wan2.1_t2v_1.3B_bf16.safetensors --vae Wan2.1_VAE.pth \
--t5 models_t5_umt5-xxl-enc-bf16.pth \
--attn_mode torch \
--lora_weight Tamako_Kitashirakawa_outputs/Tamako_Kitashirakawa_w1_3_lora-000012.safetensors \
--lora_multiplier 1.0 \
--prompt "In the style of Tamako Market , a character with dark hair tied in a ponytail, wearing a red scarf and a blue jacket, giving her a clean and sporty joyful look. She is holding a freshly made burger in her hands, its golden bun slightly glistening under the warm glow of the restaurant lights. With a look of satisfaction, she takes a hearty bite, She leans back in her seat, savoring every bite."
- Tamako Kitashirakawa Holding a Bouquet of Roses
python wan_generate_video.py --fp8 --task t2v-1.3B --video_size 480 832 --video_length 81 --infer_steps 20 \
--save_path save --output_type both \
--dit wan2.1_t2v_1.3B_bf16.safetensors --vae Wan2.1_VAE.pth \
--t5 models_t5_umt5-xxl-enc-bf16.pth \
--attn_mode torch \
--lora_weight Tamako_Kitashirakawa_outputs/Tamako_Kitashirakawa_w1_3_lora-000012.safetensors \
--lora_multiplier 1.0 \
--prompt "In the style of Tamako Market , a character with dark hair tied in a ponytail, giving her a clean joyful look. She reached for a bouquet of roses. Her hand gently grasped the stems, the motion elegant and deliberate."
- Tamako Kitashirakawa with a Drink in Front of a Store
python wan_generate_video.py --fp8 --task t2v-1.3B --video_size 480 832 --video_length 81 --infer_steps 20 \
--save_path save --output_type both \
--dit wan2.1_t2v_1.3B_bf16.safetensors --vae Wan2.1_VAE.pth \
--t5 models_t5_umt5-xxl-enc-bf16.pth \
--attn_mode torch \
--lora_weight Tamako_Kitashirakawa_outputs/Tamako_Kitashirakawa_w1_3_lora-000012.safetensors \
--lora_multiplier 1.0 \
--prompt "In the style of Tamako Market , a character with dark hair tied in a ponytail, giving her a clean joyful look. She holds a purple and green drink with a straw in her left hand. Her expression is neutral. The background shows a yellow and white storefront with graffiti. The character is standing in front of the store."
Parameters
--fp8
: Enable FP8 precision (optional).--task
: Specify the task (e.g.,t2v-1.3B
).--video_size
: Set the resolution of the generated video (e.g.,1024 1024
).--video_length
: Define the length of the video in frames.--infer_steps
: Number of inference steps.--save_path
: Directory to save the generated video.--output_type
: Output type (e.g.,both
for video and frames).--dit
: Path to the diffusion model weights.--vae
: Path to the VAE model weights.--t5
: Path to the T5 model weights.--attn_mode
: Attention mode (e.g.,torch
).--lora_weight
: Path to the LoRA weights.--lora_multiplier
: Multiplier for LoRA weights.--prompt
: Textual prompt for video generation.
Output
The generated video and frames will be saved in the specified save_path
directory.
Troubleshooting
• Ensure all dependencies are correctly installed.
• Verify that the model weights are downloaded and placed in the correct locations.
• Check for any missing Python packages and install them using pip
.
License
This project is licensed under the MIT License. See the LICENSE file for details.
Acknowledgments
• Hugging Face for hosting the model weights. • Wan-AI for providing the pre-trained models. • DeepBeepMeep for contributing to the model weights.
Contact
For any questions or issues, please open an issue on the repository or contact the maintainer.