sysresearch101's picture
Update README.md
69237fd verified
|
raw
history blame
5.93 kB
metadata
language:
  - en
license: mit
tags:
  - summarization
  - t5-large-summarization
  - pipeline:summarization
model-index:
  - name: sysresearch101/t5-large-finetuned-xsum
    results:
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: xsum
          type: xsum
          config: default
          split: test
        metrics:
          - type: rouge
            value: 26.8921
            name: ROUGE-1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmFkMTFiNmM3YmRkZDk1Y2FhM2EwOTdiYmUwYjBhMGEzZmIyZmIwNWI5OTVmY2U0N2QzYzgxYzM0OTEzMjFjNSIsInZlcnNpb24iOjF9.fOq4zI_BWvTLFJFQOWNk3xEsDIu3aAeboGYPw5TiBqdJJjvdyKmLbfj2WVnNboWbrmp1PuL01iJjTi2Xj6PUAA
          - type: rouge
            value: 6.9411
            name: ROUGE-2
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTBlZmI3NjQ3M2JiYzI4MTg3YmJkMjg0ZmE5MDUwNzljNTYyM2M0NzA3YTNiNTA2Nzk4MDhhYWZjZjgyMmE1MCIsInZlcnNpb24iOjF9.rH0DY2hMz2rXaK29vkt7xah-3G95rY4MOS2oVKjXmw4TijB-ZVytfLJAlBmyqA8HYAythRCywmLSjjCDWc66Cg
          - type: rouge
            value: 21.2832
            name: ROUGE-L
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODAwZDYzNTc0NjZhNzNiMDE2ZDY2NjNjNmViNTc0NDVjNTZkYjljODhmYmNiMWFhY2NkZjU5MzQ0NmM0OTcyMSIsInZlcnNpb24iOjF9.5duHtdjZ8dwtbp1HKyMR4mVK9IIlEZvuWGjQMErpE7VNyKPhMOT6Avh_vXFQz6q_jBzqpZGGREho1mt50yBsDw
          - type: rouge
            value: 21.284
            name: ROUGE-LSUM
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGQ2NmNhZTZmZDFkNTcyYjQ4MjhhYWJhODY1ZGRjODY2ZTE5MmRmZDRlYTk4NWE4YWM1OWY2M2NjOWQ3YzU0OCIsInZlcnNpb24iOjF9.SJ8xTcAVWrRDmJmQoxE1ADIcdGA4tr3V04Lv0ipMJiUksCdNC7FO8jYbjG9XmiqbDnnr5h4XoK4JB4-GsA-gDA
          - type: loss
            value: 2.5411810874938965
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGViNTVlNGI0Njk4NmZmZjExNDBkNTQ4N2FhMzRkZjRjNDNlYzFhZDIyMjJhMmFiM2ZhMTQzYTM4YzNkNWVlNyIsInZlcnNpb24iOjF9.p9n2Kf48k9F9Bkk9j7UKRayvVmOr7_LV80T0ti4lUWFtTsZ91Re841xnEAcKSYgQ9-Bni56ldq9js3kunspJCw
          - type: gen_len
            value: 18.7755
            name: gen_len
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmQ1ZWUxNmFjNmU0OGI4MDQyZDNjMWQwZGViNDhlMzE1OGE3YmYwYzZjYmM1NWEwMjk2MDFiMjQ4ZThhMjg5YyIsInZlcnNpb24iOjF9.aNp-NFzBSm84GnXuDtYuHaOsSk7zw8kjCphowYFciwt-aDnhwwurYIr59kMT8JNFMnRInsDi8tvYdapareV3DA
datasets:
  - EdinburghNLP/xsum
base_model:
  - google-t5/t5-large

T5-Large Fine-tuned on XSum

Task: Abstractive Summarization (English)
Base Model: google-t5/t5-large
License: MIT

Overview

This model is a T5-Large checkpoint fine-tuned exclusively on the XSum dataset. It specializes in generating concise, single-sentence summaries in the style of BBC article abstracts.

Performance ~ On XSum test set

Metric Score
ROUGE-1 26.89
ROUGE-2 6.94
ROUGE-L 21.28
Loss 2.54
Avg. Length 18.77 tokens

Usage

Quick Start

from transformers import pipeline

summarizer = pipeline("summarization", model="sysresearch101/t5-large-finetuned-xsum")

article = "Your article text here..."
summary = summarizer(article, max_length=80, min_length=20, do_sample=False)
print(summary[0]['summary_text'])

Advanced Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("sysresearch101/t5-large-finetuned-xsum")
model = AutoModelForSeq2SeqLM.from_pretrained("sysresearch101/t5-large-finetuned-xsum")

inputs = tokenizer("summarize: " + article, return_tensors="pt", max_length=512, truncation=True)
outputs = model.generate(
    **inputs,
    max_length=80,
    min_length=20,
    num_beams=4,
    no_repeat_ngram_size=2,
    length_penalty=1.0,
    repetition_penalty=2.5,
    use_cache=True,
    early_stopping=True
    do_sample = True,
    temperature = 0.8,
    top_k = 50,
    top_p = 0.95
)

summary = tokenizer.decode(outputs[0], skip_special_tokens=True)

Training Data

  • XSum: BBC articles paired with professionally written single-sentence summaries

Intended Use

  • Primary: Summarization
  • Secondary: Research on extreme summarization, single-sentence summary generation, Educational demonstrations, comparative studies with multi-sentence models
  • Not recommended: Multi-sentence summarization tasks, production use without validation

Limitations

  • Trained only on news domain; may not generalize to other text types
  • Generates very short summaries (average ~19 tokens)
  • May oversimplify complex topics due to single-sentence constraint

Citation

@misc{stept2023_t5_large_xsum,
  author = {Shlomo Stept (sysresearch101)},
  title = {T5-Large Fine-tuned on XSum for Abstractive Summarization},
  year = {2023},
  publisher = {Hugging Face},
  url = {https://huggingface.co/sysresearch101/t5-large-finetuned-xsum}
}

Papers Using This Model

Contact

Created by Shlomo Stept (ORCID: 0009-0009-3185-589X) DARMIS AI