|
--- |
|
license: llama2 |
|
datasets: |
|
- bigcode/starcoderdata |
|
- togethercomputer/RedPajama-Data-1T |
|
- tiiuae/falcon-refinedweb |
|
metrics: |
|
- code_eval |
|
- accuracy |
|
pipeline_tag: text-generation |
|
tags: |
|
- code |
|
- text-generation-inference |
|
model-index: |
|
- name: long_llama_code_7b |
|
results: |
|
- task: |
|
name: Code Generation |
|
type: code-generation |
|
dataset: |
|
name: "HumanEval" |
|
type: openai_humaneval |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.286 |
|
verified: false |
|
- task: |
|
name: Math Reasoning |
|
type: reasoning |
|
dataset: |
|
name: "GSM8K-Python" |
|
type: gsm8k |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.249 |
|
verified: false |
|
- task: |
|
name: Math Reasoning |
|
type: reasoning |
|
dataset: |
|
name: "GSM8K" |
|
type: gsm8k |
|
metrics: |
|
- name: pass@1 |
|
type: pass@1 |
|
value: 0.174 |
|
verified: false |
|
- task: |
|
name: Knowledge |
|
type: knowledge |
|
dataset: |
|
name: "MMLU" |
|
type: mmlu |
|
metrics: |
|
- name: accuracy |
|
type: accuracy |
|
value: 0.399 |
|
verified: false |
|
--- |
|
|
|
|
|
# LongLLaMA: Focused Transformer Training for Context Scaling |
|
|
|
|
|
<div align="center"> |
|
|
|
|
|
<table> |
|
|
|
<tr> |
|
<td align="center"> |
|
<span style="font-size:300%">{</span> |
|
</td> |
|
<td align="center"> |
|
<span style="font-size:115%"> |
|
<b> |
|
<a href="https://huggingface.co/syzymon/long_llama_code_7b" tyle="margin-bottom:30px">LongLLaMA Code-7B</a> |
|
</b> |
|
</span> |
|
</td> |
|
<td align="center"> |
|
<span style="font-size:300%">}</span> |
|
</td> |
|
|
|
</tr> |
|
</table> |
|
|
|
|
|
</div> |
|
|
|
|
|
<div align="center"> |
|
|
|
[TLDR](#TLDR) | [Overview](#Overview) | [Results](#Results) | [Usage](#Usage) | [Authors](#Authors) | [Citation](#Citation) | [License](#License) | [Acknowledgments](#Acknowledgments) |
|
|
|
[FoT continued pretraining](https://github.com/CStanKonrad/long_llama/tree/main/fot_continued_pretraining) | [Instruction tuning](https://github.com/CStanKonrad/long_llama/tree/main/instruction_fine_tuning) |
|
|
|
</div> |
|
|
|
|
|
|
|
## TLDR |
|
This repository contains the research preview of **LongLLaMA, a large language model capable of handling long contexts of 256k tokens or even more**. |
|
|
|
LongLLaMA-Code is built upon the foundation of [Code Llama](https://huggingface.co/codellama/CodeLlama-7b-hf). |
|
|
|
LongLLaMA-Code has **improved reasoning capabilities** compared to CodeLlama, in particular we improve **GSM8K math reasoning from 13% to 17.4% after just continued pre-training, no in-distribution fine-tuning**. |
|
|
|
<p align="center" width="100%"> |
|
<img src="https://raw.githubusercontent.com/CStanKonrad/long_llama/main/assets/results.png" alt="LongLLaMA" style="width: 70%; min-width: 300px; display: block; margin: auto;"> |
|
</p> |
|
|
|
## Overview |
|
|
|
### Base models |
|
[Focused Transformer: Contrastive Training for Context Scaling](https://arxiv.org/abs/2307.03170) (FoT) presents a simple method for endowing language models with the ability to handle context consisting possibly of millions of tokens while training on significantly shorter input. FoT permits a subset of attention layers to access a memory cache of (key, value) pairs to extend the context length. The distinctive aspect of FoT is its training procedure, drawing from contrastive learning. Specifically, we deliberately expose the memory attention layers to both relevant and irrelevant keys (like negative samples from unrelated documents). This strategy incentivizes the model to differentiate keys connected with semantically diverse values, thereby enhancing their structure. This, in turn, makes it possible to extrapolate the effective context length much beyond what is seen in training. |
|
|
|
|
|
**LongLLaMA** is an [OpenLLaMA](https://github.com/openlm-research/open_llama) model finetuned with the FoT method, |
|
with three layers used for context extension. **Crucially, LongLLaMA is able to extrapolate much beyond the context length seen in training: 8k. E.g., in the passkey retrieval task, it can handle inputs of length 256k**. |
|
**LongLLaMA-Code** is a [Code Llama](https://huggingface.co/codellama/CodeLlama-7b-hf) model finetuned with the FoT method. |
|
|
|
|
|
#### Model card |
|
<div align="center"> |
|
|
|
| | [LongLLaMA-3B](https://huggingface.co/syzymon/long_llama_3b) | [LongLLaMA-3Bv1.1](https://huggingface.co/syzymon/long_llama_3b_v1_1) | [LongLLaMA Code-7B](https://huggingface.co/syzymon/long_llama_code_7b) | |
|
|----------------|----------|----------|-----------| |
|
| Source model | [OpenLLaMA-3B](https://huggingface.co/openlm-research/open_llama_3b_easylm) | [OpenLLaMA-3Bv2](https://huggingface.co/openlm-research/open_llama_3b_v2_easylm) | [CodeLLaMA-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) | |
|
| Source model tokens | 1T | 1 T | 2T + 0.5 T | |
|
| Fine-tuning context | 8K | **32K** | **32K** | |
|
| Fine-tuning tokens | 10B | 5B | **35B** | |
|
| Memory layers | 6, 12, 18 | 6, 12, 18 | 8, 16, 24 | |
|
|
|
</div> |
|
|
|
## Results |
|
|
|
<p align="center" width="100%"> |
|
<img src="https://raw.githubusercontent.com/CStanKonrad/long_llama/main/assets/full_results.png" alt="LongLLaMA" style="width: 70%; min-width: 300px; display: block; margin: auto;"> |
|
</p> |
|
|
|
## Usage |
|
|
|
See also: |
|
* [Colab with LongLLaMA-Instruct-3Bv1.1](https://colab.research.google.com/github/CStanKonrad/long_llama/blob/main/long_llama_instruct_colab.ipynb). |
|
* [Colab with an example usage of base LongLLaMA](https://colab.research.google.com/github/CStanKonrad/long_llama/blob/main/long_llama_colab.ipynb). |
|
### Requirements |
|
``` |
|
pip install --upgrade pip |
|
pip install git+https://github.com/huggingface/transformers.git@main sentencepiece accelerate |
|
``` |
|
|
|
### Loading model |
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("syzymon/long_llama_code_7b") |
|
model = AutoModelForCausalLM.from_pretrained("syzymon/long_llama_code_7b", |
|
torch_dtype=torch.float32, |
|
trust_remote_code=True) |
|
``` |
|
|
|
### Input handling and generation |
|
LongLLaMA uses the Hugging Face interface, the long input given to the model will be |
|
split into context windows and loaded into the memory cache. |
|
```python |
|
prompt = "My name is Julien and I like to" |
|
input_ids = tokenizer(prompt, return_tensors="pt").input_ids |
|
outputs = model(input_ids=input_ids) |
|
``` |
|
During the model call, one can provide the parameter `last_context_length` which specifies the number of tokens left in the last context window. Tuning this parameter can improve generation as the first layers do not have access to memory. See details in [How LongLLaMA handles long inputs](#How-LongLLaMA-handles-long-inputs). |
|
|
|
```python |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=1024, |
|
num_beams=1, |
|
last_context_length=3072, |
|
do_sample=True, |
|
temperature=1.0, |
|
) |
|
print(tokenizer.decode(generation_output[0])) |
|
``` |
|
|
|
### Additional configuration |
|
LongLLaMA has several other parameters: |
|
* `mem_layers` specifies layers endowed with memory (should be either an empty list or a list of all memory layers specified in the description of the checkpoint). |
|
* `mem_dtype` allows changing the type of memory cache |
|
* `mem_attention_grouping` can trade off speed for reduced memory usage. |
|
When equal to `(4, 2048)`, the memory layers will process at most $4*2048$ queries at once ($4$ heads and $2048$ queries for each head). |
|
|
|
```python |
|
import torch |
|
from transformers import LlamaTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("syzymon/long_llama_code_7b") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"syzymon/long_llama_code_7b", torch_dtype=torch.float32, |
|
mem_layers=[], |
|
mem_dtype='bfloat16', |
|
trust_remote_code=True, |
|
mem_attention_grouping=(4, 2048), |
|
) |
|
``` |
|
|
|
|
|
### Drop-in use with LLaMA code |
|
LongLLaMA checkpoints can also be used as a drop-in replacement for LLaMA checkpoints in [Hugging Face implementation of LLaMA](https://huggingface.co/docs/transformers/main/model_doc/llama), but in this case, they will be limited to the original context length. |
|
|
|
```python |
|
from transformers import LlamaTokenizer, LlamaForCausalLM |
|
import torch |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("syzymon/long_llama_code_7b") |
|
model = LlamaForCausalLM.from_pretrained("syzymon/long_llama_code_7b", torch_dtype=torch.float32) |
|
``` |
|
|
|
|
|
### How LongLLaMA handles long inputs |
|
Inputs over $ctx=2048$ ($ctx=4096$ for LongLLaMA Code) tokens are automatically split into windows $w_1, \ldots, w_m$. The first $m-2$ windows contain $ctx$ tokens each, $w_{m-1}$ has no more than $2048$ tokens, and $w_m$ contains the number of tokens specified by `last_context_length`. The model processes the windows one by one extending the memory cache after each. If `use_cache` is `True`, then the last window will not be loaded to the memory cache but to the local (generation) cache. |
|
|
|
The memory cache stores $(key, value)$ pairs for each head of the specified memory layers `mem_layers`. In addition to this, it stores attention masks. |
|
|
|
If `use_cache=True` (which is the case in generation), LongLLaMA will use two caches: the memory cache for the specified layers and the local (generation) cache for all layers. When the local cache exceeds $2048$ elements, its content is moved to the memory cache for the memory layers. |
|
|
|
For simplicity, context extension is realized with a memory cache and full attention in this repo. Replacing this simple mechanism with a KNN search over an external database is possible with systems like [Faiss](https://github.com/facebookresearch/faiss). This potentially would enable further context length scaling. We leave this as a future work. |
|
|
|
|
|
## Authors |
|
- [Szymon Tworkowski](https://scholar.google.com/citations?user=1V8AeXYAAAAJ&hl=en) |
|
- [Konrad Staniszewski](https://scholar.google.com/citations?user=CM6PCBYAAAAJ) |
|
- [Mikołaj Pacek](https://scholar.google.com/citations?user=eh6iEbQAAAAJ&hl=en&oi=ao) |
|
- [Henryk Michalewski](https://scholar.google.com/citations?user=YdHW1ycAAAAJ&hl=en) |
|
- [Yuhuai Wu](https://scholar.google.com/citations?user=bOQGfFIAAAAJ&hl=en) |
|
- [Piotr Miłoś](https://scholar.google.pl/citations?user=Se68XecAAAAJ&hl=pl&oi=ao) |
|
|
|
|
|
## Citation |
|
To cite this work please use |
|
```bibtex |
|
@misc{tworkowski2023focused, |
|
title={Focused Transformer: Contrastive Training for Context Scaling}, |
|
author={Szymon Tworkowski and Konrad Staniszewski and Mikołaj Pacek and Yuhuai Wu and Henryk Michalewski and Piotr Miłoś}, |
|
year={2023}, |
|
eprint={2307.03170}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
|
|
## License |
|
For the LongLLaMA Code see [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf/blob/main/LICENSE) license. |
|
Some of the examples use external code (see headers of files for copyright notices and licenses). |
|
|
|
## Acknowledgments |
|
Special thanks to [Keiran Paster](https://twitter.com/keirp1) for providing immensely valuable suggestions about the pre-training data. |
|
|
|
We gratefully acknowledge the TPU Research Cloud program, which was instrumental to our research by providing significant computational resources. We are also grateful to Xinyang Geng and Hao Liu for releasing [OpenLLaMA](https://github.com/openlm-research/open_llama) checkpoints and the [EasyLM](https://github.com/young-geng/EasyLM) library. |
|
|
|
We would like to thank [Xiaosong,He](https://github.com/hxs91) for suggestions on how to improve the explanations of cross-batch code. |
|
|
|
|