Uploaded model

  • Developed by: onewan
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Sample Use

Jupyter notebook、特にGoogle Colaboratoryで動作させることを想定しています

まずは以下のとおりインストールを実行してください

!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --upgrade torch
!pip install --upgrade xformers
!pip install ipywidgets --upgrade
  • 以下のコードを実行する前に、
    • コードの中の「--Input your own Hugging Face Token--」の部分にご自身のHugging FaceのTokenを入力してください
      • Access Tokens > Create new tokenで、Token typeは「Finegrained」として、Read, Writeをチェックして、取得するとよいでしょう
    • "elyza-tasks-100-TV_0.jsonl"を同じフォルダに入れてください
      • Colaboratoryの場合は、左のフォルダマークを押して、直下にファイルをドラッグ&ドロップしてください
import torch
if torch.cuda.get_device_capability()[0] >= 8:
    !pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"

from unsloth import FastLanguageModel
import json
from tqdm import tqdm
import datetime
import pytz

model_name = "onewan/llm-jp-3-13b-finetune-2"
new_model_id = "llm-jp-3-13b-finetune-2"

max_seq_length = 2048
dtype = None
load_in_4bit = True

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = model_name,
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    token = "--Input your own Hugging Face Token--",
)
FastLanguageModel.for_inference(model)

datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
  input = dt["input"]
  prompt = f"""### 指示\n{input}\n### 回答\n"""
  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

now = datetime.datetime.now(pytz.timezone('Asia/Tokyo')).strftime("%Y%m%d-%H%M%S")

with open(f"{new_model_id}_output_{now}.jsonl", 'w', encoding='utf-8') as f:
  for result in results:
      json.dump(result, f, ensure_ascii=False)
      f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for taskinui/llm-jp-3-13b-finetune-2

Finetuned
(1122)
this model