Uploaded model
- Developed by: onewan
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Sample Use
Jupyter notebook、特にGoogle Colaboratoryで動作させることを想定しています
まずは以下のとおりインストールを実行してください
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --upgrade torch
!pip install --upgrade xformers
!pip install ipywidgets --upgrade
- 以下のコードを実行する前に、
- コードの中の「--Input your own Hugging Face Token--」の部分にご自身のHugging FaceのTokenを入力してください
- Access Tokens > Create new tokenで、Token typeは「Finegrained」として、Read, Writeをチェックして、取得するとよいでしょう
- "elyza-tasks-100-TV_0.jsonl"を同じフォルダに入れてください
- Colaboratoryの場合は、左のフォルダマークを押して、直下にファイルをドラッグ&ドロップしてください
- コードの中の「--Input your own Hugging Face Token--」の部分にご自身のHugging FaceのTokenを入力してください
import torch
if torch.cuda.get_device_capability()[0] >= 8:
!pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"
from unsloth import FastLanguageModel
import json
from tqdm import tqdm
import datetime
import pytz
model_name = "onewan/llm-jp-3-13b-finetune-2"
new_model_id = "llm-jp-3-13b-finetune-2"
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = model_name,
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
token = "--Input your own Hugging Face Token--",
)
FastLanguageModel.for_inference(model)
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
FastLanguageModel.for_inference(model)
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
now = datetime.datetime.now(pytz.timezone('Asia/Tokyo')).strftime("%Y%m%d-%H%M%S")
with open(f"{new_model_id}_output_{now}.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for taskinui/llm-jp-3-13b-finetune-2
Base model
llm-jp/llm-jp-3-13b