Qwen3-4B-SFT-TEST2

Model Description

Qwen3-4B-SFT-TEST2 is a language model fine-tuned for improved performance on various natural language understanding and generation tasks.

Model Details

  • Model Name: Qwen3-4B-SFT-TEST2
  • Base Model: Qwen
  • Architecture: Qwen3ForCausalLM
  • Parameters: ~2B
  • Model Type: qwen3
  • Total Size: 3.4GB
  • Upload Date: 2025-08-18

Model Architecture

  • Hidden Size: 2560
  • Number of Layers: 36
  • Attention Heads: 32
  • Vocabulary Size: 151936
  • Max Position Embeddings: 40960

Files

This repository contains:

  • SafeTensors format: Optimized for fast loading and reduced memory usage
  • Tokenizer: Included for text processing

Usage

Loading the Model

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer
model_name = "team-suzuki/Qwen3-4B-SFT-TEST2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    device_map="auto"
)

Text Generation

# Prepare input
text = "Hello, how are you?"
inputs = tokenizer(text, return_tensors="pt")

# Generate response
with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=100,
        temperature=0.7,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )

# Decode output
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Chat Format (if applicable)

# For instruction-tuned models
messages = [
    {"role": "user", "content": "What is the capital of Japan?"}
]

# Apply chat template if available
if hasattr(tokenizer, 'apply_chat_template'):
    formatted_input = tokenizer.apply_chat_template(
        messages, 
        add_generation_prompt=True,
        return_tensors="pt"
    )
else:
    formatted_input = tokenizer("User: What is the capital of Japan?\nAssistant:", return_tensors="pt")

# Generate response
outputs = model.generate(
    formatted_input,
    max_new_tokens=100,
    temperature=0.7,
    do_sample=True
)

response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Training Details

  • Training Data: [Specify training dataset if known]
  • Fine-tuning Method: [Specify fine-tuning approach]
  • Training Framework: PyTorch + Transformers
  • Hardware: [Specify if known]

Evaluation

[Add evaluation results if available]

Limitations and Biases

  • This model may exhibit biases present in the training data
  • Performance may vary across different domains and languages
  • Always verify outputs for accuracy and appropriateness

Ethical Considerations

  • Use responsibly and in accordance with applicable laws and regulations
  • Be aware of potential biases and limitations
  • Consider the impact of generated content

Citation

If you use this model in your research, please cite:

@misc{qwen3_4b_sft_test2,
  title={Qwen3-4B-SFT-TEST2: A Fine-tuned Language Model},
  author={[Your Name/Organization]},
  year={2025},
  url={https://huggingface.co/team-suzuki/Qwen3-4B-SFT-TEST2}
}

License

This model is released under the other license. Please see the license file for more details.

Contact

For questions or issues, please open an issue on this repository.


This model card was automatically generated. Please update with specific details about your model.

Downloads last month
22
Safetensors
Model size
902M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support