metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
- whisper
datasets:
- techiaith/commonvoice_18_0_cy
metrics:
- wer
model-index:
- name: whisper-large-v3-ft-cv-cy-train-all-plus-other-with-excluded
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: DewiBrynJones/commonvoice_18_0_cy default
type: DewiBrynJones/commonvoice_18_0_cy
args: default
metrics:
- name: Wer
type: wer
value: 0.185
language:
- cy
pipeline_tag: automatic-speech-recognition
whisper-large-v3-ft-cv-cy
This model is a version of openai/whisper-large-v3 fine-tuned with the
train_all
and other_with_excluded
custom splits from techiaith/commonvoice_18_0_cy
It achieves the following results on the Common Voice for Welsh release 18's standard test set:
- WER: 18.50
- CER: 5.32
N.B. this model performs considerably worse on English language speech, but better on Welsh than a bilingual model
Usage
from transformers import pipeline
transcriber = pipeline("automatic-speech-recognition", model="techiaith/whisper-large-v3-ft-cv-cy")
result = transcriber(<path or url to soundfile>)
print (result)
{'text': 'Mae hen wlad fy nhadau yn annwyl i mi.'}