fine-tuned / README.md
tejp's picture
tejp/custom_dataset
cd5054b
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
model-index:
  - name: fine-tuned
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: custom_dataset
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2857142857142857
          - name: F1
            type: f1
            value: 0.20303030303030303

fine-tuned

This model is a fine-tuned version of google/vit-base-patch16-224 on the custom_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0068
  • Accuracy: 0.2857
  • F1: 0.2030

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0