library_name: transformers
tags:
- translation
🤗 Hugging Face | 🤖 ModelScope | 🪡 AngelSlim
🖥️ Official Website | 🕹️ Demo
Model Introduction
Hunyuan-MT-Chimera-7B-fp8 was produced by AngelSlim. The Hunyuan Translation Model comprises a translation model, Hunyuan-MT-7B, and an ensemble model, Hunyuan-MT-Chimera. The translation model is used to translate source text into the target language, while the ensemble model integrates multiple translation outputs to produce a higher-quality result. It primarily supports mutual translation among 33 languages, including five ethnic minority languages in China.
Key Features and Advantages
- In the WMT25 competition, the model achieved first place in 30 out of the 31 language categories it participated in.
- Hunyuan-MT-7B achieves industry-leading performance among models of comparable scale
- Hunyuan-MT-Chimera-7B is the industry’s first open-source translation ensemble model, elevating translation quality to a new level
- A comprehensive training framework for translation models has been proposed, spanning from pretrain → cross-lingual pretraining (CPT) → supervised fine-tuning (SFT) → translation enhancement → ensemble refinement, achieving state-of-the-art (SOTA) results for models of similar size
Related News
- 2025.9.1 We have open-sourced Hunyuan-MT-7B , Hunyuan-MT-Chimera-7B on Hugging Face.
模型链接
Model Name | Description | Download |
---|---|---|
Hunyuan-MT-7B | Hunyuan 7B translation model | 🤗 Model |
Hunyuan-MT-7B-fp8 | Hunyuan 7B translation model,fp8 quant | 🤗 Model |
Hunyuan-MT-Chimera | Hunyuan 7B translation ensemble model | 🤗 Model |
Hunyuan-MT-Chimera-fp8 | Hunyuan 7B translation ensemble model,fp8 quant | 🤗 Model |
Prompts
Prompt Template for ZH<=>XX Translation.
把下面的文本翻译成<target_language>,不要额外解释。
<source_text>
Prompt Template for XX<=>XX Translation, excluding ZH<=>XX.
Translate the following segment into <target_language>, without additional explanation.
<source_text>
Prompt Template for Hunyuan-MT-Chmeria-7B
Analyze the following multiple <target_language> translations of the <source_language> segment surrounded in triple backticks and generate a single refined <target_language> translation. Only output the refined translation, do not explain.
The <source_language> segment:
```<source_text>```
The multiple <target_language> translations:
1. ```<translated_text1>```
2. ```<translated_text2>```
3. ```<translated_text3>```
4. ```<translated_text4>```
5. ```<translated_text5>```
6. ```<translated_text6>```
Use with transformers
First, please install transformers, recommends v4.56.0
pip install transformers==4.56.0
The following code snippet shows how to use the transformers library to load and apply the model.
!!! If you want to load fp8 model with transformers, you need to change the name"ignored_layers" in config.json to "ignore" and upgrade the compressed-tensors to compressed-tensors-0.11.0.
we use tencent/Hunyuan-MT-7B for example
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
model_name_or_path = "tencent/Hunyuan-MT-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto") # You may want to use bfloat16 and/or move to GPU here
messages = [
{"role": "user", "content": "Translate the following segment into Chinese, without additional explanation.\n\nIt’s on the house."},
]
tokenized_chat = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=False,
return_tensors="pt"
)
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048)
output_text = tokenizer.decode(outputs[0])
We recommend using the following set of parameters for inference. Note that our model does not have the default system_prompt.
{
"top_k": 20,
"top_p": 0.6,
"repetition_penalty": 1.05,
"temperature": 0.7
}
Supported languages:
Languages | Abbr. | Chinese Names |
---|---|---|
Chinese | zh | 中文 |
English | en | 英语 |
French | fr | 法语 |
Portuguese | pt | 葡萄牙语 |
Spanish | es | 西班牙语 |
Japanese | ja | 日语 |
Turkish | tr | 土耳其语 |
Russian | ru | 俄语 |
Arabic | ar | 阿拉伯语 |
Korean | ko | 韩语 |
Thai | th | 泰语 |
Italian | it | 意大利语 |
German | de | 德语 |
Vietnamese | vi | 越南语 |
Malay | ms | 马来语 |
Indonesian | id | 印尼语 |
Filipino | tl | 菲律宾语 |
Hindi | hi | 印地语 |
Traditional Chinese | zh-Hant | 繁体中文 |
Polish | pl | 波兰语 |
Czech | cs | 捷克语 |
Dutch | nl | 荷兰语 |
Khmer | km | 高棉语 |
Burmese | my | 缅甸语 |
Persian | fa | 波斯语 |
Gujarati | gu | 古吉拉特语 |
Urdu | ur | 乌尔都语 |
Telugu | te | 泰卢固语 |
Marathi | mr | 马拉地语 |
Hebrew | he | 希伯来语 |
Bengali | bn | 孟加拉语 |
Tamil | ta | 泰米尔语 |
Ukrainian | uk | 乌克兰语 |
Tibetan | bo | 藏语 |
Kazakh | kk | 哈萨克语 |
Mongolian | mn | 蒙古语 |
Uyghur | ug | 维吾尔语 |
Cantonese | yue | 粤语 |
Citing Hunyuan-MT:
@misc{hunyuanmt2025,
title={Hunyuan-MT Technical Report},
author={Mao Zheng, Zheng Li, Bingxin Qu, Mingyang Song, Yang Du, Mingrui Sun, Di Wang, Tao Chen, Jiaqi Zhu, Xingwu Sun, Yufei Wang, Can Xu, Chen Li, Kai Wang, Decheng Wu},
howpublished={\url{https://github.com/Tencent-Hunyuan/Hunyuan-MT}},
year={2025}
}