Upload 20 files
#35
by
ShaunSZ
- opened
hunyuan3d-paint-v2-0-turbo/unet/diffusion_pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24e7f1aea8a7c94cee627eb06f5265f19eeff4e19568636c5eaef050cc19ba3d
|
| 3 |
+
size 7325432923
|
hunyuan3d-paint-v2-0-turbo/unet/modules.py
CHANGED
|
@@ -1,13 +1,3 @@
|
|
| 1 |
-
# Open Source Model Licensed under the Apache License Version 2.0
|
| 2 |
-
# and Other Licenses of the Third-Party Components therein:
|
| 3 |
-
# The below Model in this distribution may have been modified by THL A29 Limited
|
| 4 |
-
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
| 5 |
-
|
| 6 |
-
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
| 7 |
-
# The below software and/or models in this distribution may have been
|
| 8 |
-
# modified by THL A29 Limited ("Tencent Modifications").
|
| 9 |
-
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
| 10 |
-
|
| 11 |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
| 12 |
# except for the third-party components listed below.
|
| 13 |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
|
@@ -22,7 +12,6 @@
|
|
| 22 |
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
| 23 |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
| 24 |
|
| 25 |
-
|
| 26 |
import copy
|
| 27 |
import json
|
| 28 |
import os
|
|
@@ -41,7 +30,9 @@ def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim:
|
|
| 41 |
# "feed_forward_chunk_size" can be used to save memory
|
| 42 |
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
| 43 |
raise ValueError(
|
| 44 |
-
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]}
|
|
|
|
|
|
|
| 45 |
)
|
| 46 |
|
| 47 |
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
|
@@ -51,329 +42,16 @@ def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim:
|
|
| 51 |
)
|
| 52 |
return ff_output
|
| 53 |
|
| 54 |
-
class PoseRoPEAttnProcessor2_0:
|
| 55 |
-
r"""
|
| 56 |
-
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 57 |
-
"""
|
| 58 |
-
|
| 59 |
-
def __init__(self):
|
| 60 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
| 61 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 62 |
-
|
| 63 |
-
def get_1d_rotary_pos_embed(
|
| 64 |
-
self,
|
| 65 |
-
dim: int,
|
| 66 |
-
pos: torch.Tensor,
|
| 67 |
-
theta: float = 10000.0,
|
| 68 |
-
linear_factor=1.0,
|
| 69 |
-
ntk_factor=1.0,
|
| 70 |
-
):
|
| 71 |
-
assert dim % 2 == 0
|
| 72 |
-
|
| 73 |
-
theta = theta * ntk_factor
|
| 74 |
-
freqs = (
|
| 75 |
-
1.0
|
| 76 |
-
/ (theta ** (torch.arange(0, dim, 2, dtype=pos.dtype, device=pos.device)[: (dim // 2)] / dim))
|
| 77 |
-
/ linear_factor
|
| 78 |
-
) # [D/2]
|
| 79 |
-
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
|
| 80 |
-
# flux, hunyuan-dit, cogvideox
|
| 81 |
-
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
|
| 82 |
-
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
|
| 83 |
-
return freqs_cos, freqs_sin
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def get_3d_rotary_pos_embed(
|
| 87 |
-
self,
|
| 88 |
-
position,
|
| 89 |
-
embed_dim,
|
| 90 |
-
voxel_resolution,
|
| 91 |
-
theta: int = 10000,
|
| 92 |
-
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 93 |
-
"""
|
| 94 |
-
RoPE for video tokens with 3D structure.
|
| 95 |
-
|
| 96 |
-
Args:
|
| 97 |
-
voxel_resolution (`int`):
|
| 98 |
-
The grid size of the spatial positional embedding (height, width).
|
| 99 |
-
theta (`float`):
|
| 100 |
-
Scaling factor for frequency computation.
|
| 101 |
-
|
| 102 |
-
Returns:
|
| 103 |
-
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
|
| 104 |
-
"""
|
| 105 |
-
assert position.shape[-1]==3
|
| 106 |
-
|
| 107 |
-
# Compute dimensions for each axis
|
| 108 |
-
dim_xy = embed_dim // 8 * 3
|
| 109 |
-
dim_z = embed_dim // 8 * 2
|
| 110 |
-
|
| 111 |
-
# Temporal frequencies
|
| 112 |
-
grid = torch.arange(voxel_resolution, dtype=torch.float32, device=position.device)
|
| 113 |
-
freqs_xy = self.get_1d_rotary_pos_embed(dim_xy, grid, theta=theta)
|
| 114 |
-
freqs_z = self.get_1d_rotary_pos_embed(dim_z, grid, theta=theta)
|
| 115 |
-
|
| 116 |
-
xy_cos, xy_sin = freqs_xy # both t_cos and t_sin has shape: voxel_resolution, dim_xy
|
| 117 |
-
z_cos, z_sin = freqs_z # both w_cos and w_sin has shape: voxel_resolution, dim_z
|
| 118 |
-
|
| 119 |
-
embed_flattn = position.view(-1, position.shape[-1])
|
| 120 |
-
x_cos = xy_cos[embed_flattn[:,0], :]
|
| 121 |
-
x_sin = xy_sin[embed_flattn[:,0], :]
|
| 122 |
-
y_cos = xy_cos[embed_flattn[:,1], :]
|
| 123 |
-
y_sin = xy_sin[embed_flattn[:,1], :]
|
| 124 |
-
z_cos = z_cos[embed_flattn[:,2], :]
|
| 125 |
-
z_sin = z_sin[embed_flattn[:,2], :]
|
| 126 |
-
|
| 127 |
-
cos = torch.cat((x_cos, y_cos, z_cos), dim=-1)
|
| 128 |
-
sin = torch.cat((x_sin, y_sin, z_sin), dim=-1)
|
| 129 |
-
|
| 130 |
-
cos = cos.view(*position.shape[:-1], embed_dim)
|
| 131 |
-
sin = sin.view(*position.shape[:-1], embed_dim)
|
| 132 |
-
return cos, sin
|
| 133 |
-
|
| 134 |
-
def apply_rotary_emb(
|
| 135 |
-
self,
|
| 136 |
-
x: torch.Tensor,
|
| 137 |
-
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]]
|
| 138 |
-
):
|
| 139 |
-
cos, sin = freqs_cis # [S, D]
|
| 140 |
-
cos, sin = cos.to(x.device), sin.to(x.device)
|
| 141 |
-
cos = cos.unsqueeze(1)
|
| 142 |
-
sin = sin.unsqueeze(1)
|
| 143 |
-
|
| 144 |
-
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
| 145 |
-
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
| 146 |
-
|
| 147 |
-
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
| 148 |
-
|
| 149 |
-
return out
|
| 150 |
-
|
| 151 |
-
def __call__(
|
| 152 |
-
self,
|
| 153 |
-
attn: Attention,
|
| 154 |
-
hidden_states: torch.Tensor,
|
| 155 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 156 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 157 |
-
position_indices: Dict = None,
|
| 158 |
-
temb: Optional[torch.Tensor] = None,
|
| 159 |
-
*args,
|
| 160 |
-
**kwargs,
|
| 161 |
-
) -> torch.Tensor:
|
| 162 |
-
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
| 163 |
-
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
| 164 |
-
deprecate("scale", "1.0.0", deprecation_message)
|
| 165 |
-
|
| 166 |
-
residual = hidden_states
|
| 167 |
-
if attn.spatial_norm is not None:
|
| 168 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 169 |
-
|
| 170 |
-
input_ndim = hidden_states.ndim
|
| 171 |
-
|
| 172 |
-
if input_ndim == 4:
|
| 173 |
-
batch_size, channel, height, width = hidden_states.shape
|
| 174 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 175 |
-
|
| 176 |
-
batch_size, sequence_length, _ = (
|
| 177 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
if attention_mask is not None:
|
| 181 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 182 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
| 183 |
-
# (batch, heads, source_length, target_length)
|
| 184 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 185 |
-
|
| 186 |
-
if attn.group_norm is not None:
|
| 187 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 188 |
-
|
| 189 |
-
query = attn.to_q(hidden_states)
|
| 190 |
-
|
| 191 |
-
if encoder_hidden_states is None:
|
| 192 |
-
encoder_hidden_states = hidden_states
|
| 193 |
-
elif attn.norm_cross:
|
| 194 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 195 |
-
|
| 196 |
-
key = attn.to_k(encoder_hidden_states)
|
| 197 |
-
value = attn.to_v(encoder_hidden_states)
|
| 198 |
-
|
| 199 |
-
inner_dim = key.shape[-1]
|
| 200 |
-
head_dim = inner_dim // attn.heads
|
| 201 |
-
|
| 202 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 203 |
-
|
| 204 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 205 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 206 |
-
|
| 207 |
-
if attn.norm_q is not None:
|
| 208 |
-
query = attn.norm_q(query)
|
| 209 |
-
if attn.norm_k is not None:
|
| 210 |
-
key = attn.norm_k(key)
|
| 211 |
-
|
| 212 |
-
if position_indices is not None:
|
| 213 |
-
if head_dim in position_indices:
|
| 214 |
-
image_rotary_emb = position_indices[head_dim]
|
| 215 |
-
else:
|
| 216 |
-
image_rotary_emb = self.get_3d_rotary_pos_embed(position_indices['voxel_indices'], head_dim, voxel_resolution=position_indices['voxel_resolution'])
|
| 217 |
-
position_indices[head_dim] = image_rotary_emb
|
| 218 |
-
query = self.apply_rotary_emb(query, image_rotary_emb)
|
| 219 |
-
key = self.apply_rotary_emb(key, image_rotary_emb)
|
| 220 |
-
|
| 221 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 222 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 223 |
-
hidden_states = F.scaled_dot_product_attention(
|
| 224 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 225 |
-
)
|
| 226 |
-
|
| 227 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 228 |
-
hidden_states = hidden_states.to(query.dtype)
|
| 229 |
-
|
| 230 |
-
# linear proj
|
| 231 |
-
hidden_states = attn.to_out[0](hidden_states)
|
| 232 |
-
# dropout
|
| 233 |
-
hidden_states = attn.to_out[1](hidden_states)
|
| 234 |
-
|
| 235 |
-
if input_ndim == 4:
|
| 236 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 237 |
-
|
| 238 |
-
if attn.residual_connection:
|
| 239 |
-
hidden_states = hidden_states + residual
|
| 240 |
-
|
| 241 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
| 242 |
-
|
| 243 |
-
return hidden_states
|
| 244 |
-
|
| 245 |
-
class IPAttnProcessor2_0:
|
| 246 |
-
r"""
|
| 247 |
-
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
| 248 |
-
"""
|
| 249 |
-
|
| 250 |
-
def __init__(self, scale=0.0):
|
| 251 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
| 252 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
| 253 |
-
|
| 254 |
-
self.scale = scale
|
| 255 |
-
|
| 256 |
-
def __call__(
|
| 257 |
-
self,
|
| 258 |
-
attn: Attention,
|
| 259 |
-
hidden_states: torch.Tensor,
|
| 260 |
-
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 261 |
-
ip_hidden_states: Optional[torch.Tensor] = None,
|
| 262 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 263 |
-
temb: Optional[torch.Tensor] = None,
|
| 264 |
-
*args,
|
| 265 |
-
**kwargs,
|
| 266 |
-
) -> torch.Tensor:
|
| 267 |
-
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
| 268 |
-
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
| 269 |
-
deprecate("scale", "1.0.0", deprecation_message)
|
| 270 |
-
|
| 271 |
-
residual = hidden_states
|
| 272 |
-
if attn.spatial_norm is not None:
|
| 273 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
| 274 |
-
|
| 275 |
-
input_ndim = hidden_states.ndim
|
| 276 |
-
|
| 277 |
-
if input_ndim == 4:
|
| 278 |
-
batch_size, channel, height, width = hidden_states.shape
|
| 279 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
| 280 |
-
|
| 281 |
-
batch_size, sequence_length, _ = (
|
| 282 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
| 283 |
-
)
|
| 284 |
-
|
| 285 |
-
if attention_mask is not None:
|
| 286 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
| 287 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
| 288 |
-
# (batch, heads, source_length, target_length)
|
| 289 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
| 290 |
-
|
| 291 |
-
if attn.group_norm is not None:
|
| 292 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
| 293 |
-
|
| 294 |
-
query = attn.to_q(hidden_states)
|
| 295 |
-
|
| 296 |
-
if encoder_hidden_states is None:
|
| 297 |
-
encoder_hidden_states = hidden_states
|
| 298 |
-
elif attn.norm_cross:
|
| 299 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
| 300 |
-
|
| 301 |
-
key = attn.to_k(encoder_hidden_states)
|
| 302 |
-
value = attn.to_v(encoder_hidden_states)
|
| 303 |
-
|
| 304 |
-
inner_dim = key.shape[-1]
|
| 305 |
-
head_dim = inner_dim // attn.heads
|
| 306 |
-
|
| 307 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 308 |
-
|
| 309 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 310 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 311 |
-
|
| 312 |
-
if attn.norm_q is not None:
|
| 313 |
-
query = attn.norm_q(query)
|
| 314 |
-
if attn.norm_k is not None:
|
| 315 |
-
key = attn.norm_k(key)
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 319 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
| 320 |
-
hidden_states = F.scaled_dot_product_attention(
|
| 321 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 322 |
-
)
|
| 323 |
-
|
| 324 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 325 |
-
hidden_states = hidden_states.to(query.dtype)
|
| 326 |
-
|
| 327 |
-
# for ip adapter
|
| 328 |
-
if ip_hidden_states is not None:
|
| 329 |
-
|
| 330 |
-
ip_key = attn.to_k_ip(ip_hidden_states)
|
| 331 |
-
ip_value = attn.to_v_ip(ip_hidden_states)
|
| 332 |
-
|
| 333 |
-
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 334 |
-
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 335 |
-
|
| 336 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
| 337 |
-
ip_hidden_states = F.scaled_dot_product_attention(
|
| 338 |
-
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
| 342 |
-
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
| 343 |
-
|
| 344 |
-
hidden_states = hidden_states + self.scale * ip_hidden_states
|
| 345 |
-
|
| 346 |
-
# linear proj
|
| 347 |
-
hidden_states = attn.to_out[0](hidden_states)
|
| 348 |
-
# dropout
|
| 349 |
-
hidden_states = attn.to_out[1](hidden_states)
|
| 350 |
-
|
| 351 |
-
if input_ndim == 4:
|
| 352 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
| 353 |
-
|
| 354 |
-
if attn.residual_connection:
|
| 355 |
-
hidden_states = hidden_states + residual
|
| 356 |
-
|
| 357 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
| 358 |
-
|
| 359 |
-
return hidden_states
|
| 360 |
-
|
| 361 |
|
| 362 |
class Basic2p5DTransformerBlock(torch.nn.Module):
|
| 363 |
-
def __init__(self, transformer: BasicTransformerBlock, layer_name,
|
| 364 |
super().__init__()
|
| 365 |
self.transformer = transformer
|
| 366 |
self.layer_name = layer_name
|
| 367 |
-
self.use_ipa = use_ipa
|
| 368 |
self.use_ma = use_ma
|
| 369 |
self.use_ra = use_ra
|
|
|
|
| 370 |
|
| 371 |
-
if use_ipa:
|
| 372 |
-
self.attn2.set_processor(IPAttnProcessor2_0())
|
| 373 |
-
cross_attention_dim = 1024
|
| 374 |
-
self.attn2.to_k_ip = nn.Linear(cross_attention_dim, self.dim, bias=False)
|
| 375 |
-
self.attn2.to_v_ip = nn.Linear(cross_attention_dim, self.dim, bias=False)
|
| 376 |
-
|
| 377 |
# multiview attn
|
| 378 |
if self.use_ma:
|
| 379 |
self.attn_multiview = Attention(
|
|
@@ -385,7 +63,6 @@ class Basic2p5DTransformerBlock(torch.nn.Module):
|
|
| 385 |
cross_attention_dim=None,
|
| 386 |
upcast_attention=self.attn1.upcast_attention,
|
| 387 |
out_bias=True,
|
| 388 |
-
processor=PoseRoPEAttnProcessor2_0(),
|
| 389 |
)
|
| 390 |
|
| 391 |
# ref attn
|
|
@@ -400,8 +77,8 @@ class Basic2p5DTransformerBlock(torch.nn.Module):
|
|
| 400 |
upcast_attention=self.attn1.upcast_attention,
|
| 401 |
out_bias=True,
|
| 402 |
)
|
| 403 |
-
|
| 404 |
-
|
| 405 |
|
| 406 |
def _initialize_attn_weights(self):
|
| 407 |
|
|
@@ -418,10 +95,6 @@ class Basic2p5DTransformerBlock(torch.nn.Module):
|
|
| 418 |
for param in layer.parameters():
|
| 419 |
param.zero_()
|
| 420 |
|
| 421 |
-
if self.use_ipa:
|
| 422 |
-
self.attn2.to_k_ip.load_state_dict(self.attn2.to_k.state_dict())
|
| 423 |
-
self.attn2.to_v_ip.load_state_dict(self.attn2.to_v.state_dict())
|
| 424 |
-
|
| 425 |
def __getattr__(self, name: str):
|
| 426 |
try:
|
| 427 |
return super().__getattr__(name)
|
|
@@ -447,10 +120,16 @@ class Basic2p5DTransformerBlock(torch.nn.Module):
|
|
| 447 |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
| 448 |
num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1)
|
| 449 |
mode = cross_attention_kwargs.pop('mode', None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None)
|
| 451 |
-
ip_hidden_states = cross_attention_kwargs.pop("ip_hidden_states", None)
|
| 452 |
-
position_attn_mask = cross_attention_kwargs.pop("position_attn_mask", None)
|
| 453 |
-
position_voxel_indices = cross_attention_kwargs.pop("position_voxel_indices", None)
|
| 454 |
|
| 455 |
if self.norm_type == "ada_norm":
|
| 456 |
norm_hidden_states = self.norm1(hidden_states, timestep)
|
|
@@ -470,10 +149,10 @@ class Basic2p5DTransformerBlock(torch.nn.Module):
|
|
| 470 |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
| 471 |
else:
|
| 472 |
raise ValueError("Incorrect norm used")
|
| 473 |
-
|
| 474 |
if self.pos_embed is not None:
|
| 475 |
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 476 |
-
|
| 477 |
# 1. Prepare GLIGEN inputs
|
| 478 |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
| 479 |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
|
@@ -484,6 +163,7 @@ class Basic2p5DTransformerBlock(torch.nn.Module):
|
|
| 484 |
attention_mask=attention_mask,
|
| 485 |
**cross_attention_kwargs,
|
| 486 |
)
|
|
|
|
| 487 |
if self.norm_type == "ada_norm_zero":
|
| 488 |
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 489 |
elif self.norm_type == "ada_norm_single":
|
|
@@ -492,13 +172,17 @@ class Basic2p5DTransformerBlock(torch.nn.Module):
|
|
| 492 |
hidden_states = attn_output + hidden_states
|
| 493 |
if hidden_states.ndim == 4:
|
| 494 |
hidden_states = hidden_states.squeeze(1)
|
| 495 |
-
|
| 496 |
# 1.2 Reference Attention
|
| 497 |
if 'w' in mode:
|
| 498 |
-
condition_embed_dict[self.layer_name] = rearrange(
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c')
|
| 503 |
|
| 504 |
attn_output = self.attn_refview(
|
|
@@ -507,35 +191,48 @@ class Basic2p5DTransformerBlock(torch.nn.Module):
|
|
| 507 |
attention_mask=None,
|
| 508 |
**cross_attention_kwargs
|
| 509 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
|
| 511 |
-
hidden_states = attn_output + hidden_states
|
| 512 |
if hidden_states.ndim == 4:
|
| 513 |
hidden_states = hidden_states.squeeze(1)
|
| 514 |
-
|
| 515 |
|
| 516 |
# 1.3 Multiview Attention
|
| 517 |
if num_in_batch > 1 and self.use_ma:
|
| 518 |
multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch)
|
| 519 |
-
position_mask = None
|
| 520 |
-
if position_attn_mask is not None:
|
| 521 |
-
if multivew_hidden_states.shape[1] in position_attn_mask:
|
| 522 |
-
position_mask = position_attn_mask[multivew_hidden_states.shape[1]]
|
| 523 |
-
position_indices = None
|
| 524 |
-
if position_voxel_indices is not None:
|
| 525 |
-
if multivew_hidden_states.shape[1] in position_voxel_indices:
|
| 526 |
-
position_indices = position_voxel_indices[multivew_hidden_states.shape[1]]
|
| 527 |
-
|
| 528 |
-
attn_output = self.attn_multiview(
|
| 529 |
-
multivew_hidden_states,
|
| 530 |
-
encoder_hidden_states=multivew_hidden_states,
|
| 531 |
-
attention_mask=position_mask,
|
| 532 |
-
position_indices=position_indices,
|
| 533 |
-
**cross_attention_kwargs
|
| 534 |
-
)
|
| 535 |
|
| 536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 537 |
|
| 538 |
-
|
|
|
|
|
|
|
| 539 |
if hidden_states.ndim == 4:
|
| 540 |
hidden_states = hidden_states.squeeze(1)
|
| 541 |
|
|
@@ -561,25 +258,12 @@ class Basic2p5DTransformerBlock(torch.nn.Module):
|
|
| 561 |
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
| 562 |
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 563 |
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
norm_hidden_states,
|
| 571 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 572 |
-
ip_hidden_states=ip_hidden_states,
|
| 573 |
-
attention_mask=encoder_attention_mask,
|
| 574 |
-
**cross_attention_kwargs,
|
| 575 |
-
)
|
| 576 |
-
else:
|
| 577 |
-
attn_output = self.attn2(
|
| 578 |
-
norm_hidden_states,
|
| 579 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 580 |
-
attention_mask=encoder_attention_mask,
|
| 581 |
-
**cross_attention_kwargs,
|
| 582 |
-
)
|
| 583 |
|
| 584 |
hidden_states = attn_output + hidden_states
|
| 585 |
|
|
@@ -626,8 +310,16 @@ def compute_voxel_grid_mask(position, grid_resolution=8):
|
|
| 626 |
position[valid_mask==False] = 0
|
| 627 |
|
| 628 |
|
| 629 |
-
position = rearrange(
|
| 630 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 631 |
|
| 632 |
grid_position = position.sum(dim=(-2, -1))
|
| 633 |
count_masked = valid_mask.sum(dim=(-2, -1))
|
|
@@ -674,8 +366,16 @@ def compute_discrete_voxel_indice(position, grid_resolution=8, voxel_resolution=
|
|
| 674 |
valid_mask = valid_mask.expand_as(position)
|
| 675 |
position[valid_mask==False] = 0
|
| 676 |
|
| 677 |
-
position = rearrange(
|
| 678 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 679 |
|
| 680 |
grid_position = position.sum(dim=(-2, -1))
|
| 681 |
count_masked = valid_mask.sum(dim=(-2, -1))
|
|
@@ -688,45 +388,36 @@ def compute_discrete_voxel_indice(position, grid_resolution=8, voxel_resolution=
|
|
| 688 |
voxel_indices = torch.round(voxel_indices).long()
|
| 689 |
return voxel_indices
|
| 690 |
|
| 691 |
-
def compute_multi_resolution_discrete_voxel_indice(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 692 |
voxel_indices = {}
|
| 693 |
with torch.no_grad():
|
| 694 |
for grid_resolution, voxel_resolution in zip(grid_resolutions, voxel_resolutions):
|
| 695 |
voxel_indice = compute_discrete_voxel_indice(position_maps, grid_resolution, voxel_resolution)
|
| 696 |
voxel_indice = rearrange(voxel_indice, 'b n c h w -> b (n h w) c')
|
| 697 |
voxel_indices[voxel_indice.shape[1]] = {'voxel_indices':voxel_indice, 'voxel_resolution':voxel_resolution}
|
| 698 |
-
return voxel_indices
|
| 699 |
-
|
| 700 |
-
class ImageProjModel(torch.nn.Module):
|
| 701 |
-
"""Projection Model"""
|
| 702 |
-
|
| 703 |
-
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
| 704 |
-
super().__init__()
|
| 705 |
-
|
| 706 |
-
self.generator = None
|
| 707 |
-
self.cross_attention_dim = cross_attention_dim
|
| 708 |
-
self.clip_extra_context_tokens = clip_extra_context_tokens
|
| 709 |
-
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
| 710 |
-
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
| 711 |
|
| 712 |
-
def forward(self, image_embeds):
|
| 713 |
-
embeds = image_embeds
|
| 714 |
-
clip_extra_context_tokens = self.proj(embeds).reshape(
|
| 715 |
-
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
| 716 |
-
)
|
| 717 |
-
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
| 718 |
-
return clip_extra_context_tokens
|
| 719 |
-
|
| 720 |
class UNet2p5DConditionModel(torch.nn.Module):
|
| 721 |
def __init__(self, unet: UNet2DConditionModel) -> None:
|
| 722 |
super().__init__()
|
| 723 |
self.unet = unet
|
| 724 |
-
self.unet_dual = copy.deepcopy(unet)
|
| 725 |
|
| 726 |
-
self.
|
| 727 |
-
self.
|
| 728 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 729 |
self.init_condition()
|
|
|
|
| 730 |
|
| 731 |
@staticmethod
|
| 732 |
def from_pretrained(pretrained_model_name_or_path, **kwargs):
|
|
@@ -737,170 +428,158 @@ class UNet2p5DConditionModel(torch.nn.Module):
|
|
| 737 |
config = json.load(file)
|
| 738 |
unet = UNet2DConditionModel(**config)
|
| 739 |
unet = UNet2p5DConditionModel(unet)
|
| 740 |
-
|
| 741 |
-
unet.unet.conv_in = torch.nn.Conv2d(
|
| 742 |
-
12,
|
| 743 |
-
unet.unet.conv_in.out_channels,
|
| 744 |
-
kernel_size=unet.unet.conv_in.kernel_size,
|
| 745 |
-
stride=unet.unet.conv_in.stride,
|
| 746 |
-
padding=unet.unet.conv_in.padding,
|
| 747 |
-
dilation=unet.unet.conv_in.dilation,
|
| 748 |
-
groups=unet.unet.conv_in.groups,
|
| 749 |
-
bias=unet.unet.conv_in.bias is not None)
|
| 750 |
-
|
| 751 |
unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True)
|
| 752 |
unet.load_state_dict(unet_ckpt, strict=True)
|
| 753 |
unet = unet.to(torch_dtype)
|
| 754 |
return unet
|
| 755 |
-
|
| 756 |
-
def init_condition(self):
|
| 757 |
-
self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1,77,1024))
|
| 758 |
-
self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1,77,1024))
|
| 759 |
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 764 |
|
|
|
|
|
|
|
| 765 |
|
| 766 |
def init_camera_embedding(self):
|
| 767 |
-
self.max_num_ref_image = 5
|
| 768 |
-
self.max_num_gen_image = 12*3+4*2
|
| 769 |
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
|
|
|
| 776 |
|
| 777 |
for down_block_i, down_block in enumerate(unet.down_blocks):
|
| 778 |
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
|
| 779 |
for attn_i, attn in enumerate(down_block.attentions):
|
| 780 |
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
| 781 |
if isinstance(transformer, BasicTransformerBlock):
|
| 782 |
-
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 783 |
|
| 784 |
if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention:
|
| 785 |
for attn_i, attn in enumerate(unet.mid_block.attentions):
|
| 786 |
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
| 787 |
if isinstance(transformer, BasicTransformerBlock):
|
| 788 |
-
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 789 |
|
| 790 |
for up_block_i, up_block in enumerate(unet.up_blocks):
|
| 791 |
if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention:
|
| 792 |
for attn_i, attn in enumerate(up_block.attentions):
|
| 793 |
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
| 794 |
if isinstance(transformer, BasicTransformerBlock):
|
| 795 |
-
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(
|
| 796 |
-
|
|
|
|
|
|
|
|
|
|
| 797 |
|
| 798 |
def __getattr__(self, name: str):
|
| 799 |
try:
|
| 800 |
return super().__getattr__(name)
|
| 801 |
except AttributeError:
|
| 802 |
return getattr(self.unet, name)
|
| 803 |
-
|
| 804 |
def forward(
|
| 805 |
-
self, sample, timestep, encoder_hidden_states,
|
| 806 |
-
*args,
|
| 807 |
down_block_res_samples=None, mid_block_res_sample=None,
|
| 808 |
**cached_condition,
|
| 809 |
):
|
| 810 |
B, N_gen, _, H, W = sample.shape
|
| 811 |
-
|
| 812 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 813 |
sample = [sample]
|
| 814 |
-
|
| 815 |
if 'normal_imgs' in cached_condition:
|
| 816 |
sample.append(cached_condition["normal_imgs"])
|
| 817 |
if 'position_imgs' in cached_condition:
|
| 818 |
sample.append(cached_condition["position_imgs"])
|
| 819 |
-
|
| 820 |
sample = torch.cat(sample, dim=2)
|
|
|
|
| 821 |
sample = rearrange(sample, 'b n c h w -> (b n) c h w')
|
| 822 |
|
| 823 |
encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1)
|
| 824 |
encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c')
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
use_position_mask = False
|
| 828 |
-
use_position_rope = True
|
| 829 |
-
|
| 830 |
-
position_attn_mask = None
|
| 831 |
-
if use_position_mask:
|
| 832 |
-
if 'position_attn_mask' in cached_condition:
|
| 833 |
-
position_attn_mask = cached_condition['position_attn_mask']
|
| 834 |
-
else:
|
| 835 |
-
if 'position_maps' in cached_condition:
|
| 836 |
-
position_attn_mask = compute_multi_resolution_mask(cached_condition['position_maps'])
|
| 837 |
-
|
| 838 |
-
position_voxel_indices = None
|
| 839 |
-
if use_position_rope:
|
| 840 |
-
if 'position_voxel_indices' in cached_condition:
|
| 841 |
-
position_voxel_indices = cached_condition['position_voxel_indices']
|
| 842 |
-
else:
|
| 843 |
-
if 'position_maps' in cached_condition:
|
| 844 |
-
position_voxel_indices = compute_multi_resolution_discrete_voxel_indice(cached_condition['position_maps'])
|
| 845 |
|
| 846 |
-
if
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
if 'clip_embeds' in cached_condition:
|
| 850 |
-
ip_hidden_states = self.image_proj_model(cached_condition['clip_embeds'])
|
| 851 |
else:
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 857 |
else:
|
| 858 |
-
condition_embed_dict =
|
| 859 |
-
ref_latents = cached_condition['ref_latents']
|
| 860 |
-
N_ref = ref_latents.shape[1]
|
| 861 |
-
camera_info_ref = cached_condition['camera_info_ref']
|
| 862 |
-
camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)')
|
| 863 |
-
|
| 864 |
-
#ref_latents = [ref_latents]
|
| 865 |
-
#if 'normal_imgs' in cached_condition:
|
| 866 |
-
# ref_latents.append(torch.zeros_like(ref_latents[0]))
|
| 867 |
-
#if 'position_imgs' in cached_condition:
|
| 868 |
-
# ref_latents.append(torch.zeros_like(ref_latents[0]))
|
| 869 |
-
#ref_latents = torch.cat(ref_latents, dim=2)
|
| 870 |
-
|
| 871 |
-
ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w')
|
| 872 |
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
noisy_ref_latents = ref_latents
|
| 877 |
-
timestep_ref = 0
|
| 878 |
-
'''
|
| 879 |
-
if timestep.dim()>0:
|
| 880 |
-
timestep_ref = rearrange(timestep, '(b n) -> b n', b=B)[:,:1].repeat(1, N_ref)
|
| 881 |
-
timestep_ref = rearrange(timestep_ref, 'b n -> (b n)')
|
| 882 |
-
else:
|
| 883 |
-
timestep_ref = timestep
|
| 884 |
-
noise = torch.randn_like(noisy_ref_latents[:,:4,...])
|
| 885 |
-
if self.training:
|
| 886 |
-
noisy_ref_latents[:,:4,...] = self.train_sched.add_noise(noisy_ref_latents[:,:4,...], noise, timestep_ref)
|
| 887 |
-
noisy_ref_latents[:,:4,...] = self.train_sched.scale_model_input(noisy_ref_latents[:,:4,...], timestep_ref)
|
| 888 |
-
else:
|
| 889 |
-
noisy_ref_latents[:,:4,...] = self.val_sched.add_noise(noisy_ref_latents[:,:4,...], noise, timestep_ref.reshape(-1))
|
| 890 |
-
noisy_ref_latents[:,:4,...] = self.val_sched.scale_model_input(noisy_ref_latents[:,:4,...], timestep_ref.reshape(-1))
|
| 891 |
-
'''
|
| 892 |
-
self.unet_dual(
|
| 893 |
-
noisy_ref_latents, timestep_ref,
|
| 894 |
-
encoder_hidden_states=encoder_hidden_states_ref,
|
| 895 |
-
#class_labels=camera_info_ref,
|
| 896 |
-
# **kwargs
|
| 897 |
-
return_dict=False,
|
| 898 |
-
cross_attention_kwargs={
|
| 899 |
-
'mode':'w', 'num_in_batch':N_ref,
|
| 900 |
-
'condition_embed_dict':condition_embed_dict},
|
| 901 |
-
)
|
| 902 |
-
cached_condition['condition_embed_dict'] = condition_embed_dict
|
| 903 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 904 |
return self.unet(
|
| 905 |
sample, timestep,
|
| 906 |
encoder_hidden_states_gen, *args,
|
|
@@ -916,11 +595,6 @@ class UNet2p5DConditionModel(torch.nn.Module):
|
|
| 916 |
if mid_block_res_sample is not None else None
|
| 917 |
),
|
| 918 |
return_dict=False,
|
| 919 |
-
cross_attention_kwargs=
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
'condition_embed_dict':condition_embed_dict,
|
| 923 |
-
'position_attn_mask':position_attn_mask,
|
| 924 |
-
'position_voxel_indices':position_voxel_indices
|
| 925 |
-
},
|
| 926 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
| 2 |
# except for the third-party components listed below.
|
| 3 |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
|
|
|
| 12 |
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
| 13 |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
| 14 |
|
|
|
|
| 15 |
import copy
|
| 16 |
import json
|
| 17 |
import os
|
|
|
|
| 30 |
# "feed_forward_chunk_size" can be used to save memory
|
| 31 |
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
| 32 |
raise ValueError(
|
| 33 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]}"
|
| 34 |
+
f"has to be divisible by chunk size: {chunk_size}."
|
| 35 |
+
f" Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
| 36 |
)
|
| 37 |
|
| 38 |
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
|
|
|
| 42 |
)
|
| 43 |
return ff_output
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
class Basic2p5DTransformerBlock(torch.nn.Module):
|
| 47 |
+
def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ma=True, use_ra=True, is_turbo=False) -> None:
|
| 48 |
super().__init__()
|
| 49 |
self.transformer = transformer
|
| 50 |
self.layer_name = layer_name
|
|
|
|
| 51 |
self.use_ma = use_ma
|
| 52 |
self.use_ra = use_ra
|
| 53 |
+
self.is_turbo = is_turbo
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
# multiview attn
|
| 56 |
if self.use_ma:
|
| 57 |
self.attn_multiview = Attention(
|
|
|
|
| 63 |
cross_attention_dim=None,
|
| 64 |
upcast_attention=self.attn1.upcast_attention,
|
| 65 |
out_bias=True,
|
|
|
|
| 66 |
)
|
| 67 |
|
| 68 |
# ref attn
|
|
|
|
| 77 |
upcast_attention=self.attn1.upcast_attention,
|
| 78 |
out_bias=True,
|
| 79 |
)
|
| 80 |
+
if self.is_turbo:
|
| 81 |
+
self._initialize_attn_weights()
|
| 82 |
|
| 83 |
def _initialize_attn_weights(self):
|
| 84 |
|
|
|
|
| 95 |
for param in layer.parameters():
|
| 96 |
param.zero_()
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
def __getattr__(self, name: str):
|
| 99 |
try:
|
| 100 |
return super().__getattr__(name)
|
|
|
|
| 120 |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
| 121 |
num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1)
|
| 122 |
mode = cross_attention_kwargs.pop('mode', None)
|
| 123 |
+
if not self.is_turbo:
|
| 124 |
+
mva_scale = cross_attention_kwargs.pop('mva_scale', 1.0)
|
| 125 |
+
ref_scale = cross_attention_kwargs.pop('ref_scale', 1.0)
|
| 126 |
+
else:
|
| 127 |
+
position_attn_mask = cross_attention_kwargs.pop("position_attn_mask", None)
|
| 128 |
+
position_voxel_indices = cross_attention_kwargs.pop("position_voxel_indices", None)
|
| 129 |
+
mva_scale = 1.0
|
| 130 |
+
ref_scale = 1.0
|
| 131 |
+
|
| 132 |
condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None)
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
if self.norm_type == "ada_norm":
|
| 135 |
norm_hidden_states = self.norm1(hidden_states, timestep)
|
|
|
|
| 149 |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
| 150 |
else:
|
| 151 |
raise ValueError("Incorrect norm used")
|
| 152 |
+
|
| 153 |
if self.pos_embed is not None:
|
| 154 |
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 155 |
+
|
| 156 |
# 1. Prepare GLIGEN inputs
|
| 157 |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
| 158 |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
|
|
|
| 163 |
attention_mask=attention_mask,
|
| 164 |
**cross_attention_kwargs,
|
| 165 |
)
|
| 166 |
+
|
| 167 |
if self.norm_type == "ada_norm_zero":
|
| 168 |
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 169 |
elif self.norm_type == "ada_norm_single":
|
|
|
|
| 172 |
hidden_states = attn_output + hidden_states
|
| 173 |
if hidden_states.ndim == 4:
|
| 174 |
hidden_states = hidden_states.squeeze(1)
|
| 175 |
+
|
| 176 |
# 1.2 Reference Attention
|
| 177 |
if 'w' in mode:
|
| 178 |
+
condition_embed_dict[self.layer_name] = rearrange(
|
| 179 |
+
norm_hidden_states, '(b n) l c -> b (n l) c',
|
| 180 |
+
n=num_in_batch
|
| 181 |
+
) # B, (N L), C
|
| 182 |
+
|
| 183 |
+
if 'r' in mode and self.use_ra:
|
| 184 |
+
condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1, num_in_batch, 1,
|
| 185 |
+
1) # B N L C
|
| 186 |
condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c')
|
| 187 |
|
| 188 |
attn_output = self.attn_refview(
|
|
|
|
| 191 |
attention_mask=None,
|
| 192 |
**cross_attention_kwargs
|
| 193 |
)
|
| 194 |
+
if not self.is_turbo:
|
| 195 |
+
ref_scale_timing = ref_scale
|
| 196 |
+
if isinstance(ref_scale, torch.Tensor):
|
| 197 |
+
ref_scale_timing = ref_scale.unsqueeze(1).repeat(1, num_in_batch).view(-1)
|
| 198 |
+
for _ in range(attn_output.ndim - 1):
|
| 199 |
+
ref_scale_timing = ref_scale_timing.unsqueeze(-1)
|
| 200 |
+
|
| 201 |
+
hidden_states = ref_scale_timing * attn_output + hidden_states
|
| 202 |
|
|
|
|
| 203 |
if hidden_states.ndim == 4:
|
| 204 |
hidden_states = hidden_states.squeeze(1)
|
|
|
|
| 205 |
|
| 206 |
# 1.3 Multiview Attention
|
| 207 |
if num_in_batch > 1 and self.use_ma:
|
| 208 |
multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
+
if self.is_turbo:
|
| 211 |
+
position_mask = None
|
| 212 |
+
if position_attn_mask is not None:
|
| 213 |
+
if multivew_hidden_states.shape[1] in position_attn_mask:
|
| 214 |
+
position_mask = position_attn_mask[multivew_hidden_states.shape[1]]
|
| 215 |
+
position_indices = None
|
| 216 |
+
if position_voxel_indices is not None:
|
| 217 |
+
if multivew_hidden_states.shape[1] in position_voxel_indices:
|
| 218 |
+
position_indices = position_voxel_indices[multivew_hidden_states.shape[1]]
|
| 219 |
+
attn_output = self.attn_multiview(
|
| 220 |
+
multivew_hidden_states,
|
| 221 |
+
encoder_hidden_states=multivew_hidden_states,
|
| 222 |
+
attention_mask=position_mask,
|
| 223 |
+
position_indices=position_indices,
|
| 224 |
+
**cross_attention_kwargs
|
| 225 |
+
)
|
| 226 |
+
else:
|
| 227 |
+
attn_output = self.attn_multiview(
|
| 228 |
+
multivew_hidden_states,
|
| 229 |
+
encoder_hidden_states=multivew_hidden_states,
|
| 230 |
+
**cross_attention_kwargs
|
| 231 |
+
)
|
| 232 |
|
| 233 |
+
attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch)
|
| 234 |
+
|
| 235 |
+
hidden_states = mva_scale * attn_output + hidden_states
|
| 236 |
if hidden_states.ndim == 4:
|
| 237 |
hidden_states = hidden_states.squeeze(1)
|
| 238 |
|
|
|
|
| 258 |
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
| 259 |
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 260 |
|
| 261 |
+
attn_output = self.attn2(
|
| 262 |
+
norm_hidden_states,
|
| 263 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 264 |
+
attention_mask=encoder_attention_mask,
|
| 265 |
+
**cross_attention_kwargs,
|
| 266 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
hidden_states = attn_output + hidden_states
|
| 269 |
|
|
|
|
| 310 |
position[valid_mask==False] = 0
|
| 311 |
|
| 312 |
|
| 313 |
+
position = rearrange(
|
| 314 |
+
position,
|
| 315 |
+
'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w',
|
| 316 |
+
num_h=grid_resolution, num_w=grid_resolution
|
| 317 |
+
)
|
| 318 |
+
valid_mask = rearrange(
|
| 319 |
+
valid_mask,
|
| 320 |
+
'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w',
|
| 321 |
+
num_h=grid_resolution, num_w=grid_resolution
|
| 322 |
+
)
|
| 323 |
|
| 324 |
grid_position = position.sum(dim=(-2, -1))
|
| 325 |
count_masked = valid_mask.sum(dim=(-2, -1))
|
|
|
|
| 366 |
valid_mask = valid_mask.expand_as(position)
|
| 367 |
position[valid_mask==False] = 0
|
| 368 |
|
| 369 |
+
position = rearrange(
|
| 370 |
+
position,
|
| 371 |
+
'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w',
|
| 372 |
+
num_h=grid_resolution, num_w=grid_resolution
|
| 373 |
+
)
|
| 374 |
+
valid_mask = rearrange(
|
| 375 |
+
valid_mask,
|
| 376 |
+
'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w',
|
| 377 |
+
num_h=grid_resolution, num_w=grid_resolution
|
| 378 |
+
)
|
| 379 |
|
| 380 |
grid_position = position.sum(dim=(-2, -1))
|
| 381 |
count_masked = valid_mask.sum(dim=(-2, -1))
|
|
|
|
| 388 |
voxel_indices = torch.round(voxel_indices).long()
|
| 389 |
return voxel_indices
|
| 390 |
|
| 391 |
+
def compute_multi_resolution_discrete_voxel_indice(
|
| 392 |
+
position_maps,
|
| 393 |
+
grid_resolutions=[64, 32, 16, 8],
|
| 394 |
+
voxel_resolutions=[512, 256, 128, 64]
|
| 395 |
+
):
|
| 396 |
voxel_indices = {}
|
| 397 |
with torch.no_grad():
|
| 398 |
for grid_resolution, voxel_resolution in zip(grid_resolutions, voxel_resolutions):
|
| 399 |
voxel_indice = compute_discrete_voxel_indice(position_maps, grid_resolution, voxel_resolution)
|
| 400 |
voxel_indice = rearrange(voxel_indice, 'b n c h w -> b (n h w) c')
|
| 401 |
voxel_indices[voxel_indice.shape[1]] = {'voxel_indices':voxel_indice, 'voxel_resolution':voxel_resolution}
|
| 402 |
+
return voxel_indices
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
class UNet2p5DConditionModel(torch.nn.Module):
|
| 405 |
def __init__(self, unet: UNet2DConditionModel) -> None:
|
| 406 |
super().__init__()
|
| 407 |
self.unet = unet
|
|
|
|
| 408 |
|
| 409 |
+
self.use_ma = True
|
| 410 |
+
self.use_ra = True
|
| 411 |
+
self.use_camera_embedding = True
|
| 412 |
+
self.use_dual_stream = True
|
| 413 |
+
self.is_turbo = False
|
| 414 |
+
|
| 415 |
+
if self.use_dual_stream:
|
| 416 |
+
self.unet_dual = copy.deepcopy(unet)
|
| 417 |
+
self.init_attention(self.unet_dual)
|
| 418 |
+
self.init_attention(self.unet, use_ma=self.use_ma, use_ra=self.use_ra, is_turbo=self.is_turbo)
|
| 419 |
self.init_condition()
|
| 420 |
+
self.init_camera_embedding()
|
| 421 |
|
| 422 |
@staticmethod
|
| 423 |
def from_pretrained(pretrained_model_name_or_path, **kwargs):
|
|
|
|
| 428 |
config = json.load(file)
|
| 429 |
unet = UNet2DConditionModel(**config)
|
| 430 |
unet = UNet2p5DConditionModel(unet)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True)
|
| 432 |
unet.load_state_dict(unet_ckpt, strict=True)
|
| 433 |
unet = unet.to(torch_dtype)
|
| 434 |
return unet
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
|
| 436 |
+
def init_condition(self):
|
| 437 |
+
self.unet.conv_in = torch.nn.Conv2d(
|
| 438 |
+
12,
|
| 439 |
+
self.unet.conv_in.out_channels,
|
| 440 |
+
kernel_size=self.unet.conv_in.kernel_size,
|
| 441 |
+
stride=self.unet.conv_in.stride,
|
| 442 |
+
padding=self.unet.conv_in.padding,
|
| 443 |
+
dilation=self.unet.conv_in.dilation,
|
| 444 |
+
groups=self.unet.conv_in.groups,
|
| 445 |
+
bias=self.unet.conv_in.bias is not None)
|
| 446 |
|
| 447 |
+
self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1, 77, 1024))
|
| 448 |
+
self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1, 77, 1024))
|
| 449 |
|
| 450 |
def init_camera_embedding(self):
|
|
|
|
|
|
|
| 451 |
|
| 452 |
+
if self.use_camera_embedding:
|
| 453 |
+
time_embed_dim = 1280
|
| 454 |
+
self.max_num_ref_image = 5
|
| 455 |
+
self.max_num_gen_image = 12 * 3 + 4 * 2
|
| 456 |
+
self.unet.class_embedding = nn.Embedding(self.max_num_ref_image + self.max_num_gen_image, time_embed_dim)
|
| 457 |
+
|
| 458 |
+
def init_attention(self, unet, use_ma=False, use_ra=False, is_turbo=False):
|
| 459 |
|
| 460 |
for down_block_i, down_block in enumerate(unet.down_blocks):
|
| 461 |
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
|
| 462 |
for attn_i, attn in enumerate(down_block.attentions):
|
| 463 |
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
| 464 |
if isinstance(transformer, BasicTransformerBlock):
|
| 465 |
+
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(
|
| 466 |
+
transformer,
|
| 467 |
+
f'down_{down_block_i}_{attn_i}_{transformer_i}',
|
| 468 |
+
use_ma, use_ra, is_turbo
|
| 469 |
+
)
|
| 470 |
|
| 471 |
if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention:
|
| 472 |
for attn_i, attn in enumerate(unet.mid_block.attentions):
|
| 473 |
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
| 474 |
if isinstance(transformer, BasicTransformerBlock):
|
| 475 |
+
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(
|
| 476 |
+
transformer,
|
| 477 |
+
f'mid_{attn_i}_{transformer_i}',
|
| 478 |
+
use_ma, use_ra, is_turbo
|
| 479 |
+
)
|
| 480 |
|
| 481 |
for up_block_i, up_block in enumerate(unet.up_blocks):
|
| 482 |
if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention:
|
| 483 |
for attn_i, attn in enumerate(up_block.attentions):
|
| 484 |
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
| 485 |
if isinstance(transformer, BasicTransformerBlock):
|
| 486 |
+
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(
|
| 487 |
+
transformer,
|
| 488 |
+
f'up_{up_block_i}_{attn_i}_{transformer_i}',
|
| 489 |
+
use_ma, use_ra, is_turbo
|
| 490 |
+
)
|
| 491 |
|
| 492 |
def __getattr__(self, name: str):
|
| 493 |
try:
|
| 494 |
return super().__getattr__(name)
|
| 495 |
except AttributeError:
|
| 496 |
return getattr(self.unet, name)
|
| 497 |
+
|
| 498 |
def forward(
|
| 499 |
+
self, sample, timestep, encoder_hidden_states,
|
| 500 |
+
*args, down_intrablock_additional_residuals=None,
|
| 501 |
down_block_res_samples=None, mid_block_res_sample=None,
|
| 502 |
**cached_condition,
|
| 503 |
):
|
| 504 |
B, N_gen, _, H, W = sample.shape
|
| 505 |
+
assert H == W
|
| 506 |
+
|
| 507 |
+
if self.use_camera_embedding:
|
| 508 |
+
camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image
|
| 509 |
+
camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)')
|
| 510 |
+
else:
|
| 511 |
+
camera_info_gen = None
|
| 512 |
+
|
| 513 |
sample = [sample]
|
|
|
|
| 514 |
if 'normal_imgs' in cached_condition:
|
| 515 |
sample.append(cached_condition["normal_imgs"])
|
| 516 |
if 'position_imgs' in cached_condition:
|
| 517 |
sample.append(cached_condition["position_imgs"])
|
|
|
|
| 518 |
sample = torch.cat(sample, dim=2)
|
| 519 |
+
|
| 520 |
sample = rearrange(sample, 'b n c h w -> (b n) c h w')
|
| 521 |
|
| 522 |
encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1)
|
| 523 |
encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
|
| 525 |
+
if self.use_ra:
|
| 526 |
+
if 'condition_embed_dict' in cached_condition:
|
| 527 |
+
condition_embed_dict = cached_condition['condition_embed_dict']
|
|
|
|
|
|
|
| 528 |
else:
|
| 529 |
+
condition_embed_dict = {}
|
| 530 |
+
ref_latents = cached_condition['ref_latents']
|
| 531 |
+
N_ref = ref_latents.shape[1]
|
| 532 |
+
if self.use_camera_embedding:
|
| 533 |
+
camera_info_ref = cached_condition['camera_info_ref']
|
| 534 |
+
camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)')
|
| 535 |
+
else:
|
| 536 |
+
camera_info_ref = None
|
| 537 |
+
|
| 538 |
+
ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w')
|
| 539 |
+
|
| 540 |
+
encoder_hidden_states_ref = self.unet.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1)
|
| 541 |
+
encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c')
|
| 542 |
+
|
| 543 |
+
noisy_ref_latents = ref_latents
|
| 544 |
+
timestep_ref = 0
|
| 545 |
+
|
| 546 |
+
if self.use_dual_stream:
|
| 547 |
+
unet_ref = self.unet_dual
|
| 548 |
+
else:
|
| 549 |
+
unet_ref = self.unet
|
| 550 |
+
unet_ref(
|
| 551 |
+
noisy_ref_latents, timestep_ref,
|
| 552 |
+
encoder_hidden_states=encoder_hidden_states_ref,
|
| 553 |
+
class_labels=camera_info_ref,
|
| 554 |
+
# **kwargs
|
| 555 |
+
return_dict=False,
|
| 556 |
+
cross_attention_kwargs={
|
| 557 |
+
'mode': 'w', 'num_in_batch': N_ref,
|
| 558 |
+
'condition_embed_dict': condition_embed_dict},
|
| 559 |
+
)
|
| 560 |
+
cached_condition['condition_embed_dict'] = condition_embed_dict
|
| 561 |
else:
|
| 562 |
+
condition_embed_dict = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
|
| 564 |
+
mva_scale = cached_condition.get('mva_scale', 1.0)
|
| 565 |
+
ref_scale = cached_condition.get('ref_scale', 1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 566 |
|
| 567 |
+
if self.is_turbo:
|
| 568 |
+
cross_attention_kwargs_ = {
|
| 569 |
+
'mode': 'r', 'num_in_batch': N_gen,
|
| 570 |
+
'condition_embed_dict': condition_embed_dict,
|
| 571 |
+
'position_attn_mask':position_attn_mask,
|
| 572 |
+
'position_voxel_indices':position_voxel_indices,
|
| 573 |
+
'mva_scale': mva_scale,
|
| 574 |
+
'ref_scale': ref_scale,
|
| 575 |
+
}
|
| 576 |
+
else:
|
| 577 |
+
cross_attention_kwargs_ = {
|
| 578 |
+
'mode': 'r', 'num_in_batch': N_gen,
|
| 579 |
+
'condition_embed_dict': condition_embed_dict,
|
| 580 |
+
'mva_scale': mva_scale,
|
| 581 |
+
'ref_scale': ref_scale,
|
| 582 |
+
}
|
| 583 |
return self.unet(
|
| 584 |
sample, timestep,
|
| 585 |
encoder_hidden_states_gen, *args,
|
|
|
|
| 595 |
if mid_block_res_sample is not None else None
|
| 596 |
),
|
| 597 |
return_dict=False,
|
| 598 |
+
cross_attention_kwargs=cross_attention_kwargs_,
|
| 599 |
+
)
|
| 600 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|