metadata
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- code
- 'medical '
- farmer
- doctor
- Mega-Series
- Cyber-Series
- Role-Play
- Self-Rag
- ThinkingBot
- milestone
- mega-series
- SpydazWebAI
- TensorBlock
- GGUF
base_model: LeroyDyer/SpydazWeb_AI_CyberTron_Ultra_7b
metrics:
- accuracy
- bertscore
- bleu
- brier_score
- cer
- character
- charcut_mt
- chrf
- code_eval
library_name: transformers
datasets:
- gretelai/synthetic_text_to_sql
- HuggingFaceTB/cosmopedia
- teknium/OpenHermes-2.5
- Open-Orca/SlimOrca
- Open-Orca/OpenOrca
- cognitivecomputations/dolphin-coder
- databricks/databricks-dolly-15k
- yahma/alpaca-cleaned
- uonlp/CulturaX
- mwitiderrick/SwahiliPlatypus
- swahili
- Rogendo/English-Swahili-Sentence-Pairs
- ise-uiuc/Magicoder-Evol-Instruct-110K
- meta-math/MetaMathQA

LeroyDyer/SpydazWeb_AI_CyberTron_Ultra_7b - GGUF
This repo contains GGUF format model files for LeroyDyer/SpydazWeb_AI_CyberTron_Ultra_7b.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b5165.
Our projects
Forge | |
---|---|
![]() |
|
An OpenAI-compatible multi-provider routing layer. | |
π Try it now! π | |
Awesome MCP Servers | TensorBlock Studio |
![]() |
![]() |
A comprehensive collection of Model Context Protocol (MCP) servers. | A lightweight, open, and extensible multi-LLM interaction studio. |
π See what we built π | π See what we built π |
Prompt template
<s>[INST] {prompt} [/INST]
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
SpydazWeb_AI_CyberTron_Ultra_7b-Q2_K.gguf | Q2_K | 2.719 GB | smallest, significant quality loss - not recommended for most purposes |
SpydazWeb_AI_CyberTron_Ultra_7b-Q3_K_S.gguf | Q3_K_S | 3.165 GB | very small, high quality loss |
SpydazWeb_AI_CyberTron_Ultra_7b-Q3_K_M.gguf | Q3_K_M | 3.519 GB | very small, high quality loss |
SpydazWeb_AI_CyberTron_Ultra_7b-Q3_K_L.gguf | Q3_K_L | 3.822 GB | small, substantial quality loss |
SpydazWeb_AI_CyberTron_Ultra_7b-Q4_0.gguf | Q4_0 | 4.109 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
SpydazWeb_AI_CyberTron_Ultra_7b-Q4_K_S.gguf | Q4_K_S | 4.140 GB | small, greater quality loss |
SpydazWeb_AI_CyberTron_Ultra_7b-Q4_K_M.gguf | Q4_K_M | 4.368 GB | medium, balanced quality - recommended |
SpydazWeb_AI_CyberTron_Ultra_7b-Q5_0.gguf | Q5_0 | 4.998 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
SpydazWeb_AI_CyberTron_Ultra_7b-Q5_K_S.gguf | Q5_K_S | 4.998 GB | large, low quality loss - recommended |
SpydazWeb_AI_CyberTron_Ultra_7b-Q5_K_M.gguf | Q5_K_M | 5.131 GB | large, very low quality loss - recommended |
SpydazWeb_AI_CyberTron_Ultra_7b-Q6_K.gguf | Q6_K | 5.942 GB | very large, extremely low quality loss |
SpydazWeb_AI_CyberTron_Ultra_7b-Q8_0.gguf | Q8_0 | 7.696 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/LeroyDyer_SpydazWeb_AI_CyberTron_Ultra_7b-GGUF --include "SpydazWeb_AI_CyberTron_Ultra_7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/LeroyDyer_SpydazWeb_AI_CyberTron_Ultra_7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'