morriszms's picture
Update README.md
2745769 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - text-generation-inference
  - transformers
  - unsloth
  - mistral
  - trl
  - code
  - 'medical '
  - farmer
  - doctor
  - Mega-Series
  - Cyber-Series
  - Role-Play
  - Self-Rag
  - ThinkingBot
  - milestone
  - mega-series
  - SpydazWebAI
  - TensorBlock
  - GGUF
base_model: LeroyDyer/SpydazWeb_AI_CyberTron_Ultra_7b
metrics:
  - accuracy
  - bertscore
  - bleu
  - brier_score
  - cer
  - character
  - charcut_mt
  - chrf
  - code_eval
library_name: transformers
datasets:
  - gretelai/synthetic_text_to_sql
  - HuggingFaceTB/cosmopedia
  - teknium/OpenHermes-2.5
  - Open-Orca/SlimOrca
  - Open-Orca/OpenOrca
  - cognitivecomputations/dolphin-coder
  - databricks/databricks-dolly-15k
  - yahma/alpaca-cleaned
  - uonlp/CulturaX
  - mwitiderrick/SwahiliPlatypus
  - swahili
  - Rogendo/English-Swahili-Sentence-Pairs
  - ise-uiuc/Magicoder-Evol-Instruct-110K
  - meta-math/MetaMathQA
TensorBlock

Website Twitter Discord GitHub Telegram

LeroyDyer/SpydazWeb_AI_CyberTron_Ultra_7b - GGUF

This repo contains GGUF format model files for LeroyDyer/SpydazWeb_AI_CyberTron_Ultra_7b.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b5165.

Our projects

Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
πŸš€ Try it now! πŸš€
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€

Prompt template

<s>[INST] {prompt} [/INST]

Model file specification

Filename Quant type File Size Description
SpydazWeb_AI_CyberTron_Ultra_7b-Q2_K.gguf Q2_K 2.719 GB smallest, significant quality loss - not recommended for most purposes
SpydazWeb_AI_CyberTron_Ultra_7b-Q3_K_S.gguf Q3_K_S 3.165 GB very small, high quality loss
SpydazWeb_AI_CyberTron_Ultra_7b-Q3_K_M.gguf Q3_K_M 3.519 GB very small, high quality loss
SpydazWeb_AI_CyberTron_Ultra_7b-Q3_K_L.gguf Q3_K_L 3.822 GB small, substantial quality loss
SpydazWeb_AI_CyberTron_Ultra_7b-Q4_0.gguf Q4_0 4.109 GB legacy; small, very high quality loss - prefer using Q3_K_M
SpydazWeb_AI_CyberTron_Ultra_7b-Q4_K_S.gguf Q4_K_S 4.140 GB small, greater quality loss
SpydazWeb_AI_CyberTron_Ultra_7b-Q4_K_M.gguf Q4_K_M 4.368 GB medium, balanced quality - recommended
SpydazWeb_AI_CyberTron_Ultra_7b-Q5_0.gguf Q5_0 4.998 GB legacy; medium, balanced quality - prefer using Q4_K_M
SpydazWeb_AI_CyberTron_Ultra_7b-Q5_K_S.gguf Q5_K_S 4.998 GB large, low quality loss - recommended
SpydazWeb_AI_CyberTron_Ultra_7b-Q5_K_M.gguf Q5_K_M 5.131 GB large, very low quality loss - recommended
SpydazWeb_AI_CyberTron_Ultra_7b-Q6_K.gguf Q6_K 5.942 GB very large, extremely low quality loss
SpydazWeb_AI_CyberTron_Ultra_7b-Q8_0.gguf Q8_0 7.696 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/LeroyDyer_SpydazWeb_AI_CyberTron_Ultra_7b-GGUF --include "SpydazWeb_AI_CyberTron_Ultra_7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/LeroyDyer_SpydazWeb_AI_CyberTron_Ultra_7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'