morriszms's picture
Upload folder using huggingface_hub
22f2dac verified
---
language:
- en
license: apache-2.0
tags:
- text-generation
- TensorBlock
- GGUF
base_model: Felladrin/Smol-Llama-101M-Chat-v1
datasets:
- Open-Orca/SlimOrca-Dedup
- VMware/open-instruct
- LDJnr/Capybara
- cognitivecomputations/ultrachat-uncensored
- starfishmedical/webGPT_x_dolly
- THUDM/webglm-qa
widget:
- messages:
- role: system
content: You are a helpful assistant who gives creative responses.
- role: user
content: Write the background story of a game about wizards and llamas in a sci-fi
world.
- messages:
- role: system
content: A friendly chat between a user and an assistant.
- role: user
content: Got a question for you!
- role: assistant
content: Sure! What's it?
- role: user
content: I need to build a simple website. Where should I start learning about
web development?
- messages:
- role: system
content: You are a helpful assistant who provides concise answers to the user's
questions.
- role: user
content: How to become more healthy?
- messages:
- role: system
content: You are a helpful assistant, who always answers with empathy.
- role: user
content: List the pros and cons of social media.
- messages:
- role: system
content: You are a helpful assistant, who always answers with empathy.
- role: user
content: Hello!
- role: assistant
content: Hi! How can I help you today?
- role: user
content: 'Take a look at the info below.
- The tape inside the VHS cassettes is very delicate and can be easily ruined,
making them unplayable and unrepairable. The reason the tape deteriorates is
that the magnetic charge needed for them to work is not permanent, and the magnetic
particles end up losing their charge in a process known as remanence decay.
These particles could also become demagnetised via being stored too close to
a magnetic source.
- One of the most significant issues with VHS tapes is that they have moving
parts, meaning that there are more occasions when something can go wrong, damaging
your footage or preventing it from playing back. The tape itself is a prominent
cause of this, and tape slippage can occur. Tapes slippage can be caused when
the tape loses its tension, or it has become warped. These problems can occur
in storage due to high temperatures or frequent changes in humidity.
- VHS tapes deteriorate over time from infrequent or overuse. Neglect means
mold and dirt, while overuse can lead to scratches and technical difficulties.
This is why old VHS tapes inevitably experience malfunctions after a long period
of time. Usually anywhere between 10 to 25+ years.
- Some VHS tapes like newer mini DVs and Digital 8 tapes can suffer from digital
corruption, meaning that the footage becomes lost and cannot be recovered. These
tapes were the steppingstone from VHS to the digital age when capturing footage
straight to digital became the norm. Unfortunately,they are susceptible to digital
corruption, which causes video pixilation and/or loss of audio.'
- role: assistant
content: Alright!
- role: user
content: 'Now I''m going to write my question, and if the info above is useful,
you can use them in your response.
Ready?'
- role: assistant
content: Ready for your question!
- role: user
content: Why do VHS tapes deteriorate over time?
inference:
parameters:
max_new_tokens: 250
penalty_alpha: 0.5
top_k: 4
repetition_penalty: 1.105
model-index:
- name: Smol-Llama-101M-Chat-v1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 22.87
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Smol-Llama-101M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 28.69
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Smol-Llama-101M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.93
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Smol-Llama-101M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 45.76
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Smol-Llama-101M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.04
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Smol-Llama-101M-Chat-v1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.08
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Smol-Llama-101M-Chat-v1
name: Open LLM Leaderboard
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## Felladrin/Smol-Llama-101M-Chat-v1 - GGUF
This repo contains GGUF format model files for [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Smol-Llama-101M-Chat-v1-Q2_K.gguf](https://huggingface.co/tensorblock/Smol-Llama-101M-Chat-v1-GGUF/blob/main/Smol-Llama-101M-Chat-v1-Q2_K.gguf) | Q2_K | 0.048 GB | smallest, significant quality loss - not recommended for most purposes |
| [Smol-Llama-101M-Chat-v1-Q3_K_S.gguf](https://huggingface.co/tensorblock/Smol-Llama-101M-Chat-v1-GGUF/blob/main/Smol-Llama-101M-Chat-v1-Q3_K_S.gguf) | Q3_K_S | 0.054 GB | very small, high quality loss |
| [Smol-Llama-101M-Chat-v1-Q3_K_M.gguf](https://huggingface.co/tensorblock/Smol-Llama-101M-Chat-v1-GGUF/blob/main/Smol-Llama-101M-Chat-v1-Q3_K_M.gguf) | Q3_K_M | 0.056 GB | very small, high quality loss |
| [Smol-Llama-101M-Chat-v1-Q3_K_L.gguf](https://huggingface.co/tensorblock/Smol-Llama-101M-Chat-v1-GGUF/blob/main/Smol-Llama-101M-Chat-v1-Q3_K_L.gguf) | Q3_K_L | 0.059 GB | small, substantial quality loss |
| [Smol-Llama-101M-Chat-v1-Q4_0.gguf](https://huggingface.co/tensorblock/Smol-Llama-101M-Chat-v1-GGUF/blob/main/Smol-Llama-101M-Chat-v1-Q4_0.gguf) | Q4_0 | 0.064 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Smol-Llama-101M-Chat-v1-Q4_K_S.gguf](https://huggingface.co/tensorblock/Smol-Llama-101M-Chat-v1-GGUF/blob/main/Smol-Llama-101M-Chat-v1-Q4_K_S.gguf) | Q4_K_S | 0.064 GB | small, greater quality loss |
| [Smol-Llama-101M-Chat-v1-Q4_K_M.gguf](https://huggingface.co/tensorblock/Smol-Llama-101M-Chat-v1-GGUF/blob/main/Smol-Llama-101M-Chat-v1-Q4_K_M.gguf) | Q4_K_M | 0.065 GB | medium, balanced quality - recommended |
| [Smol-Llama-101M-Chat-v1-Q5_0.gguf](https://huggingface.co/tensorblock/Smol-Llama-101M-Chat-v1-GGUF/blob/main/Smol-Llama-101M-Chat-v1-Q5_0.gguf) | Q5_0 | 0.074 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Smol-Llama-101M-Chat-v1-Q5_K_S.gguf](https://huggingface.co/tensorblock/Smol-Llama-101M-Chat-v1-GGUF/blob/main/Smol-Llama-101M-Chat-v1-Q5_K_S.gguf) | Q5_K_S | 0.074 GB | large, low quality loss - recommended |
| [Smol-Llama-101M-Chat-v1-Q5_K_M.gguf](https://huggingface.co/tensorblock/Smol-Llama-101M-Chat-v1-GGUF/blob/main/Smol-Llama-101M-Chat-v1-Q5_K_M.gguf) | Q5_K_M | 0.074 GB | large, very low quality loss - recommended |
| [Smol-Llama-101M-Chat-v1-Q6_K.gguf](https://huggingface.co/tensorblock/Smol-Llama-101M-Chat-v1-GGUF/blob/main/Smol-Llama-101M-Chat-v1-Q6_K.gguf) | Q6_K | 0.084 GB | very large, extremely low quality loss |
| [Smol-Llama-101M-Chat-v1-Q8_0.gguf](https://huggingface.co/tensorblock/Smol-Llama-101M-Chat-v1-GGUF/blob/main/Smol-Llama-101M-Chat-v1-Q8_0.gguf) | Q8_0 | 0.108 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Smol-Llama-101M-Chat-v1-GGUF --include "Smol-Llama-101M-Chat-v1-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Smol-Llama-101M-Chat-v1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```