|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- Locutusque/hercules-v1.0 |
|
language: |
|
- en |
|
base_model: M4-ai/TinyMistral-6x248M-Instruct |
|
inference: |
|
parameters: |
|
do_sample: true |
|
temperature: 0.2 |
|
top_p: 0.14 |
|
top_k: 12 |
|
max_new_tokens: 250 |
|
repetition_penalty: 1.1 |
|
widget: |
|
- text: '<|im_start|>user |
|
|
|
Write me a Python program that calculates the factorial of n. <|im_end|> |
|
|
|
<|im_start|>assistant |
|
|
|
' |
|
- text: An emerging clinical approach to treat substance abuse disorders involves |
|
a form of cognitive-behavioral therapy whereby addicts learn to reduce their reactivity |
|
to drug-paired stimuli through cue-exposure or extinction training. It is, however, |
|
- text: '<|im_start|>user |
|
|
|
How do I say hello in Spanish? <|im_end|> |
|
|
|
<|im_start|>assistant |
|
|
|
' |
|
tags: |
|
- moe |
|
- TensorBlock |
|
- GGUF |
|
--- |
|
|
|
<div style="width: auto; margin-left: auto; margin-right: auto"> |
|
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
|
|
[](https://tensorblock.co) |
|
[](https://twitter.com/tensorblock_aoi) |
|
[](https://discord.gg/Ej5NmeHFf2) |
|
[](https://github.com/TensorBlock) |
|
[](https://t.me/TensorBlock) |
|
|
|
|
|
## M4-ai/TinyMistral-6x248M-Instruct - GGUF |
|
|
|
This repo contains GGUF format model files for [M4-ai/TinyMistral-6x248M-Instruct](https://huggingface.co/M4-ai/TinyMistral-6x248M-Instruct). |
|
|
|
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). |
|
|
|
## Our projects |
|
<table border="1" cellspacing="0" cellpadding="10"> |
|
<tr> |
|
<th colspan="2" style="font-size: 25px;">Forge</th> |
|
</tr> |
|
<tr> |
|
<th colspan="2"> |
|
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/> |
|
</th> |
|
</tr> |
|
<tr> |
|
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th> |
|
</tr> |
|
<tr> |
|
<th colspan="2"> |
|
<a href="https://github.com/TensorBlock/forge" target="_blank" style=" |
|
display: inline-block; |
|
padding: 8px 16px; |
|
background-color: #FF7F50; |
|
color: white; |
|
text-decoration: none; |
|
border-radius: 6px; |
|
font-weight: bold; |
|
font-family: sans-serif; |
|
">π Try it now! π</a> |
|
</th> |
|
</tr> |
|
|
|
<tr> |
|
<th style="font-size: 25px;">Awesome MCP Servers</th> |
|
<th style="font-size: 25px;">TensorBlock Studio</th> |
|
</tr> |
|
<tr> |
|
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th> |
|
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th> |
|
</tr> |
|
<tr> |
|
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> |
|
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th> |
|
</tr> |
|
<tr> |
|
<th> |
|
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" |
|
display: inline-block; |
|
padding: 8px 16px; |
|
background-color: #FF7F50; |
|
color: white; |
|
text-decoration: none; |
|
border-radius: 6px; |
|
font-weight: bold; |
|
font-family: sans-serif; |
|
">π See what we built π</a> |
|
</th> |
|
<th> |
|
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" |
|
display: inline-block; |
|
padding: 8px 16px; |
|
background-color: #FF7F50; |
|
color: white; |
|
text-decoration: none; |
|
border-radius: 6px; |
|
font-weight: bold; |
|
font-family: sans-serif; |
|
">π See what we built π</a> |
|
</th> |
|
</tr> |
|
</table> |
|
## Prompt template |
|
|
|
``` |
|
|
|
``` |
|
|
|
## Model file specification |
|
|
|
| Filename | Quant type | File Size | Description | |
|
| -------- | ---------- | --------- | ----------- | |
|
| [TinyMistral-6x248M-Instruct-Q2_K.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q2_K.gguf) | Q2_K | 0.379 GB | smallest, significant quality loss - not recommended for most purposes | |
|
| [TinyMistral-6x248M-Instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q3_K_S.gguf) | Q3_K_S | 0.445 GB | very small, high quality loss | |
|
| [TinyMistral-6x248M-Instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q3_K_M.gguf) | Q3_K_M | 0.487 GB | very small, high quality loss | |
|
| [TinyMistral-6x248M-Instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q3_K_L.gguf) | Q3_K_L | 0.527 GB | small, substantial quality loss | |
|
| [TinyMistral-6x248M-Instruct-Q4_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q4_0.gguf) | Q4_0 | 0.574 GB | legacy; small, very high quality loss - prefer using Q3_K_M | |
|
| [TinyMistral-6x248M-Instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q4_K_S.gguf) | Q4_K_S | 0.577 GB | small, greater quality loss | |
|
| [TinyMistral-6x248M-Instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q4_K_M.gguf) | Q4_K_M | 0.613 GB | medium, balanced quality - recommended | |
|
| [TinyMistral-6x248M-Instruct-Q5_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q5_0.gguf) | Q5_0 | 0.695 GB | legacy; medium, balanced quality - prefer using Q4_K_M | |
|
| [TinyMistral-6x248M-Instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q5_K_S.gguf) | Q5_K_S | 0.695 GB | large, low quality loss - recommended | |
|
| [TinyMistral-6x248M-Instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q5_K_M.gguf) | Q5_K_M | 0.715 GB | large, very low quality loss - recommended | |
|
| [TinyMistral-6x248M-Instruct-Q6_K.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q6_K.gguf) | Q6_K | 0.824 GB | very large, extremely low quality loss | |
|
| [TinyMistral-6x248M-Instruct-Q8_0.gguf](https://huggingface.co/tensorblock/TinyMistral-6x248M-Instruct-GGUF/blob/main/TinyMistral-6x248M-Instruct-Q8_0.gguf) | Q8_0 | 1.067 GB | very large, extremely low quality loss - not recommended | |
|
|
|
|
|
## Downloading instruction |
|
|
|
### Command line |
|
|
|
Firstly, install Huggingface Client |
|
|
|
```shell |
|
pip install -U "huggingface_hub[cli]" |
|
``` |
|
|
|
Then, downoad the individual model file the a local directory |
|
|
|
```shell |
|
huggingface-cli download tensorblock/TinyMistral-6x248M-Instruct-GGUF --include "TinyMistral-6x248M-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR |
|
``` |
|
|
|
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: |
|
|
|
```shell |
|
huggingface-cli download tensorblock/TinyMistral-6x248M-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' |
|
``` |
|
|