morriszms's picture
Upload folder using huggingface_hub
434dbaa verified
metadata
library_name: transformers
license: other
license_name: nvidia-open-model-license
license_link: >-
  https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
pipeline_tag: text-generation
language:
  - en
tags:
  - nvidia
  - reasoning
  - math
  - reinforcement learning
  - pytorch
  - TensorBlock
  - GGUF
base_model: nvidia/AceMath-RL-Nemotron-7B
TensorBlock

Website Twitter Discord GitHub Telegram

nvidia/AceMath-RL-Nemotron-7B - GGUF

This repo contains GGUF format model files for nvidia/AceMath-RL-Nemotron-7B.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b5753.

Our projects

Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀

Prompt template

<|begin▁of▁sentence|>{system_prompt}<|User|>{prompt}<|Assistant|><think>

Model file specification

Filename Quant type File Size Description
AceMath-RL-Nemotron-7B-Q2_K.gguf Q2_K 3.016 GB smallest, significant quality loss - not recommended for most purposes
AceMath-RL-Nemotron-7B-Q3_K_S.gguf Q3_K_S 3.492 GB very small, high quality loss
AceMath-RL-Nemotron-7B-Q3_K_M.gguf Q3_K_M 3.808 GB very small, high quality loss
AceMath-RL-Nemotron-7B-Q3_K_L.gguf Q3_K_L 4.088 GB small, substantial quality loss
AceMath-RL-Nemotron-7B-Q4_0.gguf Q4_0 4.431 GB legacy; small, very high quality loss - prefer using Q3_K_M
AceMath-RL-Nemotron-7B-Q4_K_S.gguf Q4_K_S 4.458 GB small, greater quality loss
AceMath-RL-Nemotron-7B-Q4_K_M.gguf Q4_K_M 4.683 GB medium, balanced quality - recommended
AceMath-RL-Nemotron-7B-Q5_0.gguf Q5_0 5.315 GB legacy; medium, balanced quality - prefer using Q4_K_M
AceMath-RL-Nemotron-7B-Q5_K_S.gguf Q5_K_S 5.315 GB large, low quality loss - recommended
AceMath-RL-Nemotron-7B-Q5_K_M.gguf Q5_K_M 5.445 GB large, very low quality loss - recommended
AceMath-RL-Nemotron-7B-Q6_K.gguf Q6_K 6.254 GB very large, extremely low quality loss
AceMath-RL-Nemotron-7B-Q8_0.gguf Q8_0 8.099 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/nvidia_AceMath-RL-Nemotron-7B-GGUF --include "AceMath-RL-Nemotron-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/nvidia_AceMath-RL-Nemotron-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'