WangchanBERTa-LST20 / README.md
thanaphatt1's picture
thanaphatt1/WangchanBERTa-LST20
ced5390
metadata
license: cc-by-4.0
base_model: pythainlp/thainer-corpus-v2-base-model
tags:
  - generated_from_trainer
datasets:
  - lst20
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: toneza
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: lst20
          type: lst20
          config: default
          split: validation
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.768370802562324
          - name: Recall
            type: recall
            value: 0.8120041393583994
          - name: F1
            type: f1
            value: 0.7895851240015932
          - name: Accuracy
            type: accuracy
            value: 0.956478116244312

toneza

This model is a fine-tuned version of pythainlp/thainer-corpus-v2-base-model on the lst20 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1293
  • Precision: 0.7684
  • Recall: 0.8120
  • F1: 0.7896
  • Accuracy: 0.9565

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1226 1.0 1978 0.1416 0.7414 0.7802 0.7603 0.9518
0.098 2.0 3956 0.1324 0.7602 0.7966 0.7780 0.9545
0.0895 3.0 5934 0.1293 0.7684 0.8120 0.7896 0.9565

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0