fine-tuned-16384-pubmed

This model is fine-tuned on the pubmed-summarization dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3719
  • Rouge1: 0.4602
  • Rouge2: 0.2253
  • Rougel: 0.2911
  • Rougelsum: 0.4283

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
12.7776 0.2667 50 9.5450 0.4552 0.2219 0.2848 0.4234
7.2062 0.5333 100 4.6159 0.4564 0.2215 0.2874 0.4241
4.0511 0.8 150 2.7224 0.4615 0.2222 0.2914 0.4287
2.657 1.0667 200 1.7347 0.4597 0.2226 0.2921 0.4273
1.7104 1.3333 250 1.0021 0.4583 0.2231 0.2918 0.4261
0.9336 1.6 300 0.5423 0.4586 0.2228 0.2905 0.4259
0.4902 1.8667 350 0.3719 0.4602 0.2253 0.2911 0.4283
0.4032 2 400 0.2967 0.4718 0.2203 0.2871 0.4243

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.0.0
  • Datasets 2.15.0
  • Tokenizers 0.19.1
Downloads last month
506
Safetensors
Model size
163M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.