thebajajra's picture
Update README.md
1c7a511 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dense
  - ecommerce
  - e-commerce
  - retail
  - marketplace
  - shopping
  - amazon
  - ebay
  - alibaba
  - google
  - rakuten
  - bestbuy
  - walmart
  - flipkart
  - wayfair
  - shein
  - target
  - etsy
  - shopify
  - taobao
  - asos
  - carrefour
  - costco
  - overstock
  - pretraining
  - encoder
  - language-modeling
  - foundation-model
pipeline_tag: sentence-similarity
library_name: sentence-transformers

RexBERT-base-embed-pf-v0.3

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[0.9961, 0.8477, 0.8750],
#         [0.8477, 0.9961, 0.8047],
#         [0.8750, 0.8047, 1.0078]], dtype=torch.bfloat16)

Training Details

Framework Versions

  • Python: 3.12.8
  • Sentence Transformers: 5.1.1
  • Transformers: 4.53.3
  • PyTorch: 2.7.0
  • Accelerate: 1.10.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.4

Citation

BibTeX