DevilsAdvocate-8B
A fine-tuned Qwen 3 8B model, fine tuned for more engaging conversation, encouraging the user to think about different aspects.
Model Details
This model is a fine-tuned version of Qwen/Qwen3-8B using the Unsloth framework with LoRA (Low-Rank Adaptation) for efficient training.
- Developed by: theprint
- Model type: Causal Language Model (Fine-tuned with LoRA)
- Language: en
- License: mit
- Base model: Qwen/Qwen3-8B
- Fine-tuning method: LoRA with rank 128
Intended Use
General conversation, project feedback and brainstorming.
GGUF Quantized Versions
Quantized GGUF versions are available in the theprint/DevilsAdvocate-8B-GGUF repo.
DevilsAdvocate-8B-f16.gguf
(15628.9 MB) - 16-bit float (original precision, largest file)DevilsAdvocate-8B-q3_k_m.gguf
(3933.1 MB) - 3-bit quantization (medium quality)DevilsAdvocate-8B-q4_k_m.gguf
(4794.9 MB) - 4-bit quantization (medium, recommended for most use cases)DevilsAdvocate-8B-q5_k_m.gguf
(5580.1 MB) - 5-bit quantization (medium, good quality)DevilsAdvocate-8B-q6_k.gguf
(6414.3 MB) - 6-bit quantization (high quality)DevilsAdvocate-8B-q8_0.gguf
(8306.0 MB) - 8-bit quantization (very high quality)
Training Details
Training Data
The data set used is theprint/Advocate-9.4k.
- Dataset: theprint/Advocate-9.4k
- Format: alpaca
Training Procedure
- Training epochs: 2
- LoRA rank: 128
- Learning rate: 5e-05
- Batch size: 2
- Framework: Unsloth + transformers + PEFT
- Hardware: NVIDIA RTX 5090
Usage
from unsloth import FastLanguageModel
import torch
# Load model and tokenizer
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="theprint/DevilsAdvocate-8B",
max_seq_length=4096,
dtype=None,
load_in_4bit=True,
)
# Enable inference mode
FastLanguageModel.for_inference(model)
# Example usage
inputs = tokenizer(["Your prompt here"], return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Alternative Usage (Standard Transformers)
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"theprint/DevilsAdvocate-8B",
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("theprint/DevilsAdvocate-8B")
# Example usage
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Your question here"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
outputs = model.generate(inputs, max_new_tokens=256, temperature=0.7, do_sample=True)
response = tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True)
print(response)
Using with llama.cpp
# Download a quantized version (q4_k_m recommended for most use cases)
wget https://huggingface.co/theprint/DevilsAdvocate-8B/resolve/main/gguf/DevilsAdvocate-8B-q4_k_m.gguf
# Run with llama.cpp
./llama.cpp/main -m DevilsAdvocate-8B-q4_k_m.gguf -p "Your prompt here" -n 256
Limitations
May provide incorrect information.
Citation
If you use this model, please cite:
@misc{devilsadvocate_8b,
title={DevilsAdvocate-8B: Fine-tuned Qwen/Qwen3-8B},
author={theprint},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/theprint/DevilsAdvocate-8B}
}
Acknowledgments
- Base model: Qwen/Qwen3-8B
- Training dataset: theprint/Advocate-9.4k
- Fine-tuning framework: Unsloth
- Quantization: llama.cpp
- Downloads last month
- -
Model tree for theprint/DevilsAdvocate-8B
Base model
Qwen/Qwen3-8B-Base
Finetuned
Qwen/Qwen3-8B