Gemma3-Python-22k-1B

A fine-tuned Gemma 3 1B model, fine tuned on the Vezora/Tested-22k-Python-Alpaca dataset.

Model Details

This model is a fine-tuned version of google/gemma-3-1b-it using the Unsloth framework with LoRA (Low-Rank Adaptation) for efficient training.

  • Developed by: theprint
  • Model type: Causal Language Model (Fine-tuned with LoRA)
  • Language: en
  • License: mit
  • Base model: google/gemma-3-1b-it
  • Fine-tuning method: LoRA with rank 128

Intended Use

Light coding support (Python only), project feedback and brainstorming.

GGUF Quantized Versions

Quantized GGUF versions are available in the theprint/Gemma3-Python-22k-1B-GGUF repo.

  • Gemma3-Python-22k-1B-f16.gguf (2489.6 MB) - 16-bit float (original precision, largest file)
  • Gemma3-Python-22k-1B-q3_k_m.gguf (850.9 MB) - 3-bit quantization (medium quality)
  • Gemma3-Python-22k-1B-q4_k_m.gguf (966.7 MB) - 4-bit quantization (medium, recommended for most use cases)
  • Gemma3-Python-22k-1B-q5_k_m.gguf (1027.9 MB) - 5-bit quantization (medium, good quality)
  • Gemma3-Python-22k-1B-q6_k.gguf (1270.9 MB) - 6-bit quantization (high quality)
  • Gemma3-Python-22k-1B-q8_0.gguf (1325.8 MB) - 8-bit quantization (very high quality)

Training Details

Training Data

The data set used is Vezora/Tested-22k-Python-Alpaca.

  • Dataset: Vezora/Tested-22k-Python-Alpaca
  • Format: alpaca

Training Procedure

  • Training epochs: 2
  • LoRA rank: 128
  • Learning rate: 3e-05
  • Batch size: 4
  • Framework: Unsloth + transformers + PEFT
  • Hardware: NVIDIA RTX 5090

Usage

from unsloth import FastLanguageModel
import torch

# Load model and tokenizer
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name="theprint/Gemma3-Python-22k-1B",
    max_seq_length=4096,
    dtype=None,
    load_in_4bit=True,
)

# Enable inference mode
FastLanguageModel.for_inference(model)

# Example usage
inputs = tokenizer(["Your prompt here"], return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Alternative Usage (Standard Transformers)

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model = AutoModelForCausalLM.from_pretrained(
    "theprint/Gemma3-Python-22k-1B",
    torch_dtype=torch.float16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("theprint/Gemma3-Python-22k-1B")

# Example usage
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Your question here"}
]

inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
outputs = model.generate(inputs, max_new_tokens=256, temperature=0.7, do_sample=True)
response = tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True)
print(response)

Using with llama.cpp

# Download a quantized version (q4_k_m recommended for most use cases)
wget https://huggingface.co/theprint/Gemma3-Python-22k-1B/resolve/main/gguf/Gemma3-Python-22k-1B-q4_k_m.gguf

# Run with llama.cpp
./llama.cpp/main -m Gemma3-Python-22k-1B-q4_k_m.gguf -p "Your prompt here" -n 256

Limitations

May provide incorrect information.

Citation

If you use this model, please cite:

@misc{gemma3_python_22k_1b,
  title={Gemma3-Python-22k-1B: Fine-tuned google/gemma-3-1b-it},
  author={theprint},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/theprint/Gemma3-Python-22k-1B}
}

Acknowledgments

Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for theprint/Gemma3-Python-22k-1B

Adapter
(134)
this model
Adapters
2 models

Dataset used to train theprint/Gemma3-Python-22k-1B