Tom-Qwen-7B-Instruct
A fine-tuned 7B parameter model specialized for step-by-step instruction and conversation.
Model Details
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct using the Unsloth framework with LoRA (Low-Rank Adaptation) for efficient training.
- Developed by: theprint
- Model type: Causal Language Model (Fine-tuned with LoRA)
- Language: en
- License: apache-2.0
- Base model: Qwen/Qwen2.5-7B-Instruct
- Fine-tuning method: LoRA with rank 128
GGUF Quantized Versions
You can find quantized gguf versions of this model in the /gguf-folder.
Quantized GGUF versions are in the gguf/
directory for use with llama.cpp:
Tom-Qwen-7B-Instruct-f16.gguf
(14531.9 MB) - 16-bit float (original precision, largest file)Tom-Qwen-7B-Instruct-q3_k_m.gguf
(3632.0 MB) - 3-bit quantization (medium quality)Tom-Qwen-7B-Instruct-q4_k_m.gguf
(4466.1 MB) - 4-bit quantization (medium, recommended for most use cases)Tom-Qwen-7B-Instruct-q5_k_m.gguf
(5192.6 MB) - 5-bit quantization (medium, good quality)Tom-Qwen-7B-Instruct-q6_k.gguf
(5964.5 MB) - 6-bit quantization (high quality)Tom-Qwen-7B-Instruct-q8_0.gguf
(7723.4 MB) - 8-bit quantization (very high quality)
Intended Use
Conversation, brainstorming, and general instruction following
Training Details
Training Data
Synthesized data set created specifically for this, focused on practical tips and well being.
- Dataset: theprint/Tom-4.2k-alpaca
- Format: alpaca
Training Procedure
- Training epochs: 3
- LoRA rank: 128
- Learning rate: 0.0002
- Batch size: 4
- Framework: Unsloth + transformers + PEFT
- Hardware: NVIDIA RTX 5090
Usage
from unsloth import FastLanguageModel
import torch
# Load model and tokenizer
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="theprint/Tom-Qwen-7B-Instruct",
max_seq_length=4096,
dtype=None,
load_in_4bit=True,
)
# Enable inference mode
FastLanguageModel.for_inference(model)
# Example usage
inputs = tokenizer(["Your prompt here"], return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Alternative Usage (Standard Transformers)
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"theprint/Tom-Qwen-7B-Instruct",
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("theprint/Tom-Qwen-7B-Instruct")
# Example usage
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Your question here"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
outputs = model.generate(inputs, max_new_tokens=256, temperature=0.7, do_sample=True)
response = tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True)
print(response)
Using with llama.cpp
# Download a quantized version (q4_k_m recommended for most use cases)
wget https://huggingface.co/theprint/Tom-Qwen-7B-Instruct/resolve/main/gguf/Tom-Qwen-7B-Instruct-q4_k_m.gguf
# Run with llama.cpp
./llama.cpp/main -m Tom-Qwen-7B-Instruct-q4_k_m.gguf -p "Your prompt here" -n 256
Limitations
May hallucinate or provide incorrect information. Not suitable for critical decision making.
Citation
If you use this model, please cite:
@misc{tom_qwen_7b_instruct,
title={Tom-Qwen-7B-Instruct: Fine-tuned Qwen/Qwen2.5-7B-Instruct},
author={theprint},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/theprint/Tom-Qwen-7B-Instruct}
}
Acknowledgments
- Base model: Qwen/Qwen2.5-7B-Instruct
- Training dataset: theprint/Tom-4.2k-alpaca
- Fine-tuning framework: Unsloth
- Quantization: llama.cpp
- Downloads last month
- 143
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support