|
--- |
|
license: mit |
|
datasets: |
|
- thundax/alpaca-zh-text2sign |
|
language: |
|
- zh |
|
metrics: |
|
- accuracy |
|
base_model: |
|
- Qwen/Qwen2.5-0.5B |
|
pipeline_tag: text-generation |
|
--- |
|
# Qwen2.5-1.5B-Sign |
|
|
|
## Introduction |
|
|
|
Qwen2.5-Sign is a text-to-chinese-sign model base on Qwen2.5 |
|
|
|
## Finetune Details |
|
|
|
- Finetune dataset: [alpaca-zh-text2sign](https://huggingface.co/datasets/thundax/alpaca-zh-text2sign) |
|
- Finetune parameter |
|
|
|
| Parameter | Value | |
|
|-----------------------------|--------| |
|
| learning_rate | 5e-05 | |
|
| train_batch_size | 4 | |
|
| eval_batch_size | 4 | |
|
| gradient_accumulation_steps | 8 | |
|
| total_train_batch_size | 32 | |
|
| lr_scheduler_type | cosine | |
|
| lr_scheduler_warmup_steps | 100 | |
|
| num_epochs | 4 | |
|
|
|
## Quickstart |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"thundax/Qwen2.5-1.5B-Sign", |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("thundax/Qwen2.5-1.5B-Sign") |
|
|
|
text = "站一个制高点看上海,上海的弄堂是壮观的景象。它是这城市背景一样的东西。" |
|
input_text = f'Translate sentence into labels\n{text}\n' |
|
model_inputs = tokenizer([input_text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
## Citation |
|
|
|
If you find our work helpful, feel free to give us a cite. |
|
|
|
``` |
|
@software{qwen2-sign, |
|
author = {thundax}, |
|
title = {qwen2-sign: A Tool for Text to Sign}, |
|
year = {2025}, |
|
url = {https://github.com/thundax-lyp}, |
|
} |
|
``` |