Introduction
We introduce Llama-Thunder-LLM, a new language model of Thunder Research Group, specialized in Korean and English.
Training Platform
Llama-Thunder-LLM is trained on Thunder-LLM-Toolkit.
Details
More comprehensive details about Llama-Thunder-LLM are provided in our paper. Please refer to our paper on arXiv for in-depth information.
Release Date
2025.06.18
Korean Benchmark Performance
The best performance in each row is marked in bold with an asterisk(*).
Benchmark | Llama-Thunder-LLM | LLaMA 3.1 8B Base Model | LLaMA 3.1 8B Instruct | Exaone-3.5 8B Ins | QWen2.5 7B Instruct |
---|---|---|---|---|---|
KoBEST-HellaSwag (0-shot) | 72.4* | 58.2 | 55.8 | 60.0 | 58.2 |
SNU_Ko-WinoGrande (5-shot) | 74.3* | 60.6 | 60.2 | 65.3 | 63.7 |
SNU_Ko-LAMBADA (0-shot) | 86.8* | 84.3 | 83.8 | 85.7 | 81.7 |
SNU_Ko-ARC-Easy (5-shot) | 76.1 | 63.3 | 64.4 | 76.7* | 69.4 |
SNU_Ko-ARC-Challenge (5-shot) | 62.4* | 44.6 | 45.7 | 57.0 | 54.5 |
KMMLU (5-shot) | 47.6 | 40.5 | 41.1 | 45.1 | 49.6* |
SNU_Ko-GSM8K (5-shot) | 57.3 | 34.6 | 53.1 | 56.7 | 67.3* |
SNU_Ko-IFEval (0-shot) | 51.5 | 30.7 | 43.4 | 67.9* | 60.5 |
KR-HumanEval (0-shot) | 56.7 | 21.9 | 42.1 | 61.0* | 28.1 |
Average | 65.0* | 48.7 | 54.4 | 63.9 | 59.2 |
English Benchmark Performance
The best performance in each row is marked in bold with an asterisk(*).
Benchmark | Llama-Thunder-LLM | LLaMA 3.1 8B Base Model | LLaMA 3.1 8B Instruct | Exaone-3.5 8B Ins | QWen2.5 7B Instruct |
---|---|---|---|---|---|
HellaSwag (0-shot) | 89.3* | 79.0 | 79.2 | 77.9 | 80.4 |
WinoGrande (5-shot) | 89.4* | 77.0 | 78.1 | 74.4 | 74.6 |
LAMBADA (0-shot) | 64.0* | 44.8 | 43.0 | 46.4 | 48.6 |
ARC-Easy (5-shot) | 91.3 | 91.5 | 93.3 | 95.4 | 96.7* |
ARC-Challenge (5-shot) | 80.3 | 79.5 | 83.2 | 85.5 | 90.3* |
MMLU (5-shot) | 63.1 | 65.3 | 68.0 | 65.2 | 74.2* |
GSM-8K (5-shot) | 76.5 | 57.2 | 77.2 | 73.7 | 83.1* |
IFEval (0-shot) | 59.1 | 18.7 | 61.4 | 78.4* | 74.8 |
HumanEval (0-shot) | 59.1 | 34.8 | 57.3 | 66.5* | 64.6 |
Average | 74.7 | 60.9 | 71.2 | 73.7 | 76.4* |
How to use
Use with transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "thunder-research-group/Llama-Thunder-LLM-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
if torch.cuda.is_available():
model.to("cuda")
# Example prompt for text generation
prompt = "ํ๊ตญ์ด์ ์์ด๋ ์ด๋ป๊ฒ ๋ค๋ฅธ๊ฐ์?"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
if torch.cuda.is_available():
input_ids = input_ids.to("cuda")
# Generate text
outputs = model.generate(input_ids, max_new_tokens=200, num_return_sequences=1)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
Use with Thunder-LLM-Toolkit
For more advanced usage, fine-tuning, or specific functionalities related to model development, you can refer to the Thunder-LLM-Toolkit GitHub repository.
License
This repository contains original work licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-NC-SA 4.0).
- Creative Commons Attribution-ShareAlike 4.0 License:
https://creativecommons.org/licenses/by-nc-sa/4.0/
Notice
In accordance with the Llama 3.1 license, this work is a derivative of the Llama Materials. As required by the Meta Llama 3.1 license policy, we provide the following notices and include a copy of the original license:
- Built with Llama
- Meta Llama 3.1 Community License:
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE
Additional Information
Citation
If you use this model, please cite:
@article{kim2025thunder,
title={Thunder-LLM: Efficiently Adapting LLMs to Korean with Minimal Resources},
author={Kim, Jinpyo and Cho, Gyeongje and Park, Chanwoo and Park, Jongwon and Kim, Jongmin and So, Yeonkyoung and Lee, Jaejin},
journal={arXiv preprint arXiv:2506.21595},
year={2025}
}
- Downloads last month
- 32
Model tree for thunder-research-group/Llama-Thunder-LLM-8B
Base model
meta-llama/Llama-3.1-8B