See axolotl config
axolotl version: 0.9.2
# Model Configuration
base_model: Qwen/Qwen3-0.6B-Base
type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
special_tokens:
flash_attention: true
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
sequence_len: 4096
chat_template: qwen3
# Dataset Configuration
shuffle_merged_datasets: true
dataset_processes: 8
sample_packing: true
pad_to_sequence_len: true
group_by_length: false
train_on_inputs: false
datasets:
- path: timarni/s1k_r1_clean
ds_type: json
type: chat_template
field_messages: conversations
message_property_mappings: {role: from, content: value}
# datasets:
# - path: "json"
# data_files: "/mloscratch/users/arni/reasoning_sft/data/s1k_r1/s1k_r1_think_token_cleaned.jsonl"
# type: chat_template
# ds_type: json
# split: train
# field_messages: conversations
# message_field_role: from
# message_field_content: value
# Training Hyperparameters
micro_batch_size: 1
gradient_accumulation_steps: 4
max_steps: 8500
num_epochs: 2 # 5
learning_rate: 4e-5 # 7e-7
optimizer: adamw_torch
optim_args:
fused: true
lr_scheduler: cosine
cosine_min_lr_ratio: 0 # change this to 0.1
warmup_ratio: 0.05
weight_decay: 1.0e-4
adam_beta1: 0.9
adam_beta2: 0.95
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
max_grad_norm: 1.0
# Hardware/Performance Configuration
load_in_4bit: false
load_in_8bit: false
bnb_config: null
deepspeed: /mloscratch/users/arni/meditron_protocol/training/sft/axolotl_config/deepspeed.json
xformers_attention: null
eager_attention: true
tf32: false
bf16: true
# Logging/Checkpointing
output_dir: /mloscratch/users/arni/models/qwen3-0.6B-Base-s1k_r1_reasoning_token
logging_steps: 1
saves_per_epoch: 1
resume_from_checkpoint: null
load_best_model_at_end: false
early_stopping_patience: 0
eval_set_size: 0.0
eval_table_size: null
# evals_per_epoch: 2
# eval_steps: 1000
# save_steps: 100
# WandB Configuration
wandb_project: mnlp # meditron-reasoning
wandb_entity: tim-arni # alexs-team
wandb_name: qwen3-0.6B-Base-s1k_r1_reasoning_token # medicouenne-7b-checkpoint-5742-medMCQA
mloscratch/users/arni/models/qwen3-0.6B-Base-s1k_r1_reasoning_token
This model is a fine-tuned version of Qwen/Qwen3-0.6B-Base on the /mloscratch/users/arni/reasoning_sft/data/s1k_r1/s1k_r1_think_token_cleaned.jsonl dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Use adamw_torch with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=fused=True
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 8500
Training results
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 20
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for timarni/qwen3-0.6B-reasoning-sft_2
Base model
Qwen/Qwen3-0.6B-Base