rwightman HF Staff commited on
Commit
07c7be9
·
verified ·
1 Parent(s): f3bc270

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -1
README.md CHANGED
@@ -6,4 +6,70 @@ library_name: open_clip
6
  pipeline_tag: zero-shot-image-classification
7
  license: apple-amlr
8
  ---
9
- # Model card for MobileCLIP2-S4-OpenCLIP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  pipeline_tag: zero-shot-image-classification
7
  license: apple-amlr
8
  ---
9
+ # Model card for MobileCLIP2-S4-OpenCLIP
10
+ These weights and model card are adapted from the original Apple model at https://huggingface.co/apple/MobileCLIP2-S4. This version uses canonical OpenCLIP configs and weight naming.
11
+
12
+ MobileCLIP2 was introduced in [MobileCLIP2: Improving Multi-Modal Reinforced Training](http://arxiv.org/abs/2508.20691) (TMLR August 2025 <mark>Featured</mark>), by Fartash Faghri, Pavan Kumar Anasosalu Vasu, Cem Koc, Vaishaal Shankar, Alexander T Toshev, Oncel Tuzel, Hadi Pouransari.
13
+
14
+ This repository contains the **MobileCLIP2-S4** checkpoint.
15
+
16
+ ### Highlights
17
+
18
+ * `MobileCLIP2-S4` matches the accuracy of SigLIP-SO400M/14 with 2x fewer parameters and surpasses DFN ViT-L/14 at 2.5x lower latency measured on iPhone12 Pro Max.
19
+ * `MobileCLIP-S3/S4` are our new architectures trained on MobileCLIP’s training dataset, DataCompDR-1B (dashed lines).
20
+ * Our smallest variant `MobileCLIP-S0` obtains similar zero-shot performance as [OpenAI](https://arxiv.org/abs/2103.00020)'s ViT-B/16 model while being 4.8x faster and 2.8x smaller.
21
+ * `MobileCLIP-S2` obtains better avg zero-shot performance than [SigLIP](https://arxiv.org/abs/2303.15343)'s ViT-B/16 model while being 2.3x faster and 2.1x smaller, and trained with 3x less seen samples.
22
+ * `MobileCLIP-B (LT)` attains zero-shot ImageNet performance of **77.2%** which is significantly better than recent works like [DFN](https://arxiv.org/abs/2309.17425) and [SigLIP](https://arxiv.org/abs/2303.15343) with similar architectures or even [OpenAI's ViT-L/14@336](https://arxiv.org/abs/2103.00020).
23
+
24
+
25
+ ## Checkpoints and Results (Original Apple links)
26
+
27
+ | Model | # Seen <BR>Samples (B) | # Params (M) <BR> (img + txt) | Latency (ms) <BR> (img + txt) | IN-1k Zero-Shot <BR> Top-1 Acc. (%) | Avg. Perf. (%) <BR> on 38 datasets |
28
+ |:----------------------------------------------------------|:----------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------------:|:----------------------------------:|
29
+ | [MobileCLIP2-S0](https://hf.co/apple/MobileCLIP2-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 71.5 | 59.7 |
30
+ | [MobileCLIP2-S2](https://hf.co/apple/MobileCLIP2-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 77.2 | 64.1 |
31
+ | [MobileCLIP2-B](https://hf.co/apple/MobileCLIP2-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 79.4 | 65.8 |
32
+ | [MobileCLIP2-S3](https://hf.co/apple/MobileCLIP2-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 80.7 | 66.8 |
33
+ | [MobileCLIP2-L/14](https://hf.co/apple/MobileCLIP2-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 81.9 | 67.8 |
34
+ | [MobileCLIP2-S4](https://hf.co/apple/MobileCLIP2-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 81.9 | 67.5 |
35
+ | [MobileCLIP-S0](https://hf.co/apple/MobileCLIP-S0) | 13 | 11.4 + 42.4 | 1.5 + 1.6 | 67.8 | 58.1 |
36
+ | [MobileCLIP-S1](https://hf.co/apple/MobileCLIP-S1) | 13 | 21.5 + 63.4 | 2.5 + 3.3 | 72.6 | 61.3 |
37
+ | [MobileCLIP-S2](https://hf.co/apple/MobileCLIP-S2) | 13 | 35.7 + 63.4 | 3.6 + 3.3 | 74.4 | 63.7 |
38
+ | [MobileCLIP-B](https://hf.co/apple/MobileCLIP-B) | 13 | 86.3 + 63.4 | 10.4 + 3.3 | 76.8 | 65.2 |
39
+ | [MobileCLIP-B (LT)](https://hf.co/apple/MobileCLIP-B-LT) | 36 | 86.3 + 63.4 | 10.4 + 3.3 | 77.2 | 65.8 |
40
+ | [MobileCLIP-S3](https://hf.co/apple/MobileCLIP-S3) | 13 | 125.1 + 123.6 | 8.0 + 6.6 | 78.3 | 66.3 |
41
+ | [MobileCLIP-L/14](https://hf.co/apple/MobileCLIP-L-14) | 13 | 304.3 + 123.6 | 57.9 + 6.6 | 79.5 | 66.9 |
42
+ | [MobileCLIP-S4](https://hf.co/apple/MobileCLIP-S4) | 13 | 321.6 + 123.6 | 19.6 + 6.6 | 79.4 | 68.1 |
43
+
44
+
45
+ ## How to Use
46
+
47
+ ```py
48
+ import torch
49
+ import open_clip
50
+ from PIL import Image
51
+ from urllib.request import urlopen
52
+ from timm.utils import reparameterize_model
53
+
54
+ model, _, preprocess = open_clip.create_model_and_transforms('MobileCLIP2-S4', pretrained='dfndr2b')
55
+ model.eval()
56
+ tokenizer = open_clip.get_tokenizer('MobileCLIP2-S4')
57
+
58
+ # For inference/model exporting purposes, optionally reparameterize for better performance
59
+ model = reparameterize_model(model)
60
+
61
+ image = Image.open(urlopen(
62
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
63
+ ))
64
+ image = preprocess(image).unsqueeze(0)
65
+ text = tokenizer(["a diagram", "a dog", "a cat", "a doughnut"])
66
+
67
+ with torch.no_grad(), torch.amp.autocast(image.device.type):
68
+ image_features = model.encode_image(image)
69
+ text_features = model.encode_text(text)
70
+ image_features /= image_features.norm(dim=-1, keepdim=True)
71
+ text_features /= text_features.norm(dim=-1, keepdim=True)
72
+ text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
73
+
74
+ print("Label probs:", text_probs)
75
+ ```